• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcendence degree in power series rings

Boyd, David Watts 13 May 2010 (has links)
Let D[[X]] be the ring of formal power series over the commutative integral domain D. Gilmer has shown that if K is the quotient field of D, then D[[X]] and K[[X]] have the same quotient field if and only if K[[X]] ~ D[[X]]D_(O). Further, if a is any nonzero element of D, Sheldon has shown that either D[l/a][[X]] and D[[X]] have the same quotient field, or the quotient field of D[l/a][[X]] has infinite transcendence degree over the quotient field of D[[X]]. In this paper, the relationship between D[[X]] and J[[X]] is investigated for an arbitrary overring J of D. If D is integrally closed, it is shown that either J[[X]] and D[[X]] have the same quotient field, or the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]]. It is shown further, that D is completely integrally closed if and only if the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]] for each proper overring J of D. Several related results are given; for example, if D is Noetherian, and if J is a finite ring extension of D, then either J[[X]] and D[[X]] have the same quotient field or the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]]. An example is given to show that if D is not integrally closed, J[[X]] may be algebraic over D[[X]] while J[[X]] and ~[[X]] have dif~erent quotient fields. / Ph. D.

Page generated in 0.125 seconds