• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A hybrid finite element procedure for soil-structure interaction including construction sequences

Sargand, Shad Muhammad January 1981 (has links)
An alternative to the displacement finite element method, the hybrid stress model, is applied to problems in geomechanics. A two-dimensional finite element procedure based on the hybrid stress model is developed for simulation of construction sequences including underground and surface excavations. In this procedure, an eight-node isoparametric element is employed. In the analysis, the effect of soil-structure interaction is incorporated by using a special interface element for behavior at the contact between two different materials. In the elastic-plastic analysis, the Drucker-Prager model is used as a constitutive law. In order to verify the computer program and to examine the accuracy of the hybrid stress model, several problems such as a beam, a plate with circular hole, and footings are analyzed, and the results are compared with those from the displacement method and closed-form solutions. The proposed procedure for simulation of excavation is verified by performing an excavation in linear elastic material. Finally, two field cases of excavation are solved and the results are compared with the displacement method and the field observations. It is believed that the proposed (stress) hybrid method can have significant potential of application for various problems in geomechanics, and it can be particularly appropriate for a situation where computation of stresses is important. / Ph. D.

Page generated in 0.0487 seconds