• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of the potential effects of air pollutants emitted during coal combustion on yellow poplar and loblolly pine and influences on mycorrhizal associations of loblolly pine

Mahoney, Matthew J. January 1982 (has links)
Yellow poplar (Liriodendron tulipifera L.) and loblolly pine (Pinus taeda L.), families 2-8 and 540, seedlings were fumigated with 0.07 ppm ozone, 0.06 ppm sulfur dioxide 0.07 ppm ozone + 0.06 ppm sulfur dioxide, 0.06 ppm sulfur dioxide + 0.10 ppm nitrogen dioxide and 0.07 ppm ozone + 0.06 ppm sulfur dioxide + 0.10 ppm nitrogen dioxide for 35 consecutive days, 6 hr/day. Control seedlings received charcoal-filtered air. Ozone or sulfur dioxide did not significantly affect height growth or dry weight of yellow poplar seedlings. All other treatments significantly reduced height growth and dry weight after 2 weeks of fumigation. Height growth effects of loblolly pine families were not repeatable from one year to the next in replicate experiments and weekly growth trends in the two experiments were reversed. Environmental factors related to time of year were thought to be involved with this growth trend reversal. Root dry weight was found to be a more sensitive indicator of air pollution stress than either shoot dry weight, height growth or visible symptoms. Loblolly families 2-8 and 540 were not found to be differentially sensitive to pollutant treatments. Loblolly pine seedlings, nonmycorrhizal and mycorrhizal with Pisolithus tinctorius, were fumigated with 0.07 ppm ozone and 0.06 ppm sulfur dioxide singly and in combination, 6 hr/day, for 35 consecutive days. Height growth of mycorrhizal and nonmycorrhizal seedlings was not affected by fumigation. Root dry weight of nonmycorrhizal seedlings was significantly reduced by all pollutant treatments in two replicate experiments. A similar reduction in root dry weight of mycorrhizal seedlings did not occur. Shoot dry weight of nonmycorrhizal seedlings was reduced in four of six pollutant treatments, and in one of six treatments of mycorrhizal seedlings. Mycorrhizal formation was extensive regardless of treatment. Apparent photosynthesis, measured every 4 days, was variable and significant differences among treatments did not occur. Total reducing sugar concentrations of roots were an inconclusive indicator of air pollutant stress. / Ph. D.

Page generated in 0.0478 seconds