• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Idempotents in group rings

Marciniak, Zbigniew January 1982 (has links)
The von Neumann finiteness problem for k[G] is still open. Kaplansky proved it in characteristic zero. He used the nonvanishing of the trace: tr(e) = 0 implies e = 0 for any idempotent e ∊ k[G]. Assume now that char k = p > 0. Now tr can vanish on nonzero idempotents. Instead, we study the lifted trace ltr. For e = e² ∊ k[G], define ltr(e) by ê(1) where ê = Σ{x ∊ G}ê(x)x lifts e. Here ê is an infinite series with |ê(x)|<sub>p</sub>→0, where each ê(x) lives in the Witt vector ring of k. We prove that ltr(e) depends on e only, it is a p-adic integer and ltr(e) = ltr(f) if f is equivalent to e. Also ltr(e) ∊ Q and ltr(e) = 0 implies e = 0 if G is polycyclic-by-finite. We conjecture that -log<sub>p</sub>|ltr(e)|<sub>p</sub> < |supp(e)|. We prove this for e central and for e = e² ∊ k[G] with |G| ≤ 30. In the last section, we give the example of an idempotent e such ath supp(f) is infinite for all f ~ e. Finally we estimate |<supp(e)>| for central idempotents e. / Ph. D.

Page generated in 0.0436 seconds