• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a microreactor system for unsteady-state Fischer- Tropsch synthesis

Whiting, Gary Ken January 1985 (has links)
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the “heat-tray.” This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition infonnation under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395°C using a feed gas of H₂/CO ratio of 2:1 or less. Above 395°C, the probability of hydrocarbon chain growth (α) on the fused-iron catalyst was low enough (α < 0.50) to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395°C when a feed gas of H₂/CO ratio of 2:1 or less was used. Spent catalyst fractions in the form of free-flowing catalyst and "bugdust" were quantitatively analyzed for carbon and iron. Mössbauer spectroscopic analysis of free-flowing catalyst showed mainly Hägg carbide (x-Fe₅C₂) and magnetite (Fe₃O₄) with a smaller fraction present as α-Fe. Scanning electron microscopic analysis of the bugdust revealed a mass of highly porous, fine particles with a high carbon content (18-30 wt%). Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized-bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm³/s. Further, cold-flow microreactor model studies showed intense solid mixing when a -150+300 µ bed of fused-iron catalyst was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of this microreactor system has provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. Further, the unique ability of the microreactor system to rapidly switch feed gases over an intensely-mixed solid has important applications in chemical kinetics and reaction engineering. / Ph. D.

Page generated in 0.0508 seconds