• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A methodology for evaluating photovoltaic-fuel hybird energy systems

Khallat, Mohamed Ali January 1986 (has links)
A major issue encountered in the large scale use of Photovoltaic (PV) energy sources for the production of electricity is the variability of the resource itself. Extensive fluctuations of the PV generation may cause dynamic operational problems for an electric utility. In order to remedy this situation it is proposed that fuel cell power plants be operated in parallel with PV arrays. This hybrid operation will help to smooth out the fluctuating PV output. Because of its high ramping capability the fuel cell will be able to absorb such fluctuations. An overall methodology is presented to evaluate the PV system in a large utility. This methodology has two parts-planning and operation. The aim of the planning study is to determine the capacity credit of a PV system based on the loss of load probability (LOLP). Long term SOLMET data is used to determine the nature of available insolation at a particular site. The expected value of hourly insolation is used in the planning study. The aim of the operation study is to validate the results of planning study in the shorter operational time frame, and determine the fuel cell requirements and associated operating cost savings for each penetration level of PV. A technique to find the maximum penetration level of PV, without causing any economic penalty, is presented. It is found that the penetration level can be increased up to 15.62% of peak load by adding fuel cells to the system under consideration. The annual peak load for this system is taken as 6400 MW. It must be mentioned here that, similar evaluations for other systems may yield somewhat different results. This technique is general enough such that it can be used for other intermittent sources of generation as well. / Ph. D.

Page generated in 0.0603 seconds