Spelling suggestions: "subject:"ld5655.v856 1986.557"" "subject:"ld5655.v856 1986.757""
1 |
Lp norm estimation procedures and an L1 norm algorithm for unconstrained and constrained estimation for linear modelsKim, Buyong January 1986 (has links)
When the distribution of the errors in a linear regression model departs from normality, the method of least squares seems to yield relatively poor estimates of the coefficients. One alternative approach to least squares which has received a great deal of attention of late is minimum L<sub>p</sub> norm estimation. However, the statistical efüciency of a L<sub>p</sub> estimator depends greatly on the underlying distribution of errors and on the value of p. Thus, the choice of an appropriate value of p is crucial to the effectiveness of <sub>p</sub> estimation.
Previous work has shown that L₁ estimation is a robust procedure in the sense that it leads to an estimator which has greater statistical efficiency than the least squares estimator in the presence of outliers, and that L₁ estimators have some- desirable statistical properties asymptotically. This dissertation is mainly concerned with the development of a new algorithm for L₁ estimation and constrained L₁ estimation. The mainstream of computational procedures for L₁ estimation has been the simplex-type algorithms via the linear programming formulation. Other procedures are the reweighted least squares method, and. nonlinear programming technique using the penalty function approach or descent method.
A new computational algorithm is proposed which combines the reweighted least squares method and the linear programming approach. We employ a modified Karmarkar algorithm to solve the linear programming problem instead of the simplex method. We prove that the proposed algorithm converges in a finite number of iterations. From our simulation study we demonstrate that our algorithm requires fewer iterations to solve standard problems than are required by the simplex-type methods although the amount of computation per iteration is greater for the proposed algorithm. The proposed algorithm for unconstrained L₁ estimation is extended to the case where the L₁ estimates of the parameters of a linear model satisfy certain linear equality and/or inequality constraints. These two procedures are computationally simple to implement since a weighted least squares scheme is adopted at each iteration. Our results indicate that the proposed L₁ estimation procedure yields very accurate and stable estimates and is efficient even when the problem size is large. / Ph. D.
|
Page generated in 0.0467 seconds