• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiphase immiscible flow through porous media

Sheng, Jopan January 1986 (has links)
A finite element model is developed for multiphase flow through soil involving three immiscible fluids: namely air, water, and an organic fluid. A variational method is employed for the finite element formulation corresponding to the coupled differential equations governing the flow of the three fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures which may be calibrated from two-phase laboratory measurements, are employed in the finite element program. The solution procedure uses iteration by a modified Picard method to handle the nonlinear properties and the backward method for a stable time integration. Laboratory experiments involving soil columns initially saturated with water and displaced by p-cymene (benzene-derivative hydrocarbon) under constant pressure were simulated by the finite element model to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured capillary head-saturation data agreed well with observed outflow data. Two-dimensional simulations are presented for eleven hypothetical field cases involving introduction of an organic fluid near the soil surface due to leakage from an underground storage tank. The subsequent transport of the organic fluid in the variably saturated vadose and ground water zones is analysed. / Ph. D.

Page generated in 0.0558 seconds