• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic hydroboration: a study of model hydridoiridium and hydridorhodium boron complexes

Knorr, Joseph Robert 14 October 2005 (has links)
The mechanism of catalytic hydroboration was studied through the use of iridium and rhodium model complexes. Oxidative addition of the B-H bond in (1,2-phenylenedioxy) borane (catecholborane) to (Me₃P)₃Ir(Cl)(H) (BO₂C₆H₄ (<B>II</B>) produces <i>mer</i>-(Me₃P}₃Ir(Cl)(H)(B0₂C₆H₄) (<B>II</B>), which was characterized by ¹H NMR spectroscopy and single crystal X-ray diffraction. Compound <B>II</B> reacted with alkynes to form vinyliridium complexes and will catalyze the hydroboration of alkynes with (1,2- phenylenedioxy)borane. The reaction of <B>II</B> with acetylenes was inhibited by the presence of free Lewis bases indicating that the reaction proceeds by a dissociative mechanism. Exchange of the chloride ligand in <B>II</B> occurred with other Lewis bases, indicating that chloride dissociation was responsible for opening up the vacant coordination site on the complex and thus providing for acetylene coordination. When the chloride ligand on <B>II</B> was replaced with other Lewis bases, the reactivity towards trimethylsiliylacetylene was qualitatively determined to be inversely proportional to the strength of the new ligand. The above experiments indicated that the mechanism of catalytic hydroboration of acetylenes with catecholborane involves: oxidative addition of the B-H bond to the iridium center, followed by chloride dissociation and acetylene coordination, migratory-insertion into the Ir-H bond to form the metallo-vinyl complex, and finally reductive elimination to produce trans-alkylvinylborole esters. The stable metallo-vinyl complex, <b>IX</b>, produced in the reaction of <b>II</b> with dimethyl acetylene dicarboxylate produced twO isomers in solution, one of which showed fluxional behavior. Single crystal X-ray diffraction elucidated a single solid state structure, but the structures of the isomers in solution and the fluxional properties observed have not yet been explained. The rhodium complex was synthesized by oxidative addition of the B-H bond in (1,2- phenylenedioxy) borane to (Me₃P)₃RhCl producing <i>mer</i>-(Me₃Rh(CI)(H)(BO₂C₆H-₄) (<b>XXIV</b>), which was characterized by ¹H NMR spectroscopy. This complex reacted with acetylenes, but more slowly than the iridium complex, <b>II</b>. The resulting vinyl products were also different than those produced in the iridium case. Phosphine dissociation in <b>XXIV</b> was observed, indicating the possibility of a different mechanism than proposed for the iridium complex. / Ph. D.

Page generated in 0.0579 seconds