• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A theoretical and experimental investigation into the nonlinear dynamics of floating bodies

Oh, Il Geun 22 December 2005 (has links)
The nonlinear dynamic characteristics and stability of floating vehicles are investigated theoretically and experimentally. Mathematical models of such floating bodies are used to investigate their complicated motions in regular waves. In particular, we address the phenomenon of indirectly exciting the roll motion of a vessel due to nonlinear couplings of the heave, pitch, and roll modes. In the analytical approach the method of multiple scales is used to determine first-order approximations to the solutions, yielding a system of nonlinear first-order equations governing the modulation of the amplitudes and phases of the system. The fixed-point solutions of these equations are determined and their bifurcations are investigated. Hopf bifurcations are found. Numerical simulations are used to investigate the bifurcations of the ensuing limit cycles and how they produce chaos. Experiments are conducted with tanker and destroyer models. They demonstrate some of the nonlinear effects, such as the jump phenomenon, the subcritical instability, and the coexistence of multiple solutions. The experimental results are qualitatively in good agreement with the results predicted by the theory. Coupling of the pitch and roll motions of a vessel when their frequencies are in the ratio of two-to-one is modeled by a two-degree-of-freedom system. The damping in the pitch mode is modeled by a linear viscous damping, whereas that of the roll mode is modeled by the sum of a linear viscous part and a quadratic viscous part. The effect of the quadratic damping is investigated when either mode is externally excited through a primary resonance. Force-response and frequency-response curves are generated. Coexistence of multiple solutions is found. The jump phenomenon continues to exist, whereas the saturation phenomenon ceases in the presence of quadratic damping. Hopf bifurcations are found. They indicate conditions for the nonexistence of steady-state periodic responses. Instead, the response is an amplitude- and phase-modulated motion consisting of both modes. Floquet theory is used to determine the stability of limit-cycle solutions. They undergo a pitchfork bifurcation followed by a cascade of period-doubling bifurcations, leading to chaos and hence chaotically modulated motions. When the roll mode is excited, the quadratic damping causes the region between the two Hopf bifurcation frequencies to shrink. However, the quadratic damping which may be introduced by attaching antirolling devices does not eliminate complicated motions completely in this region. The dynamic stability and excessive motion of the roll mode of a vessel in following or head regular waves is investigated theoretically and experimentally. The motion is modeled by a three-degree-of-freedom system with quadratic and cubic nonlinearities. The heave and pitch modes are linearized and their harmonic solutions are coupled into the roll mode. The resulting nonlinear ordinary-differential equation with time-varying coefficients is used to determine the stability of the roll mode for the case of principal parametric resonance. Experiments with a tanker model were conducted to validate the theory. They demonstrate the jump phenomenon and subcritical instability. They also reveal that the large-amplitude roll response depends not only on the encounter frequency but also on the position of the model relative to the waves. / Ph. D.

Page generated in 0.0537 seconds