• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representation theory, Borel cross-sections, and minimal measures

Miller, Janice E. 19 June 2006 (has links)
Let E be an analytic metric space, let X be a separable metric space with a regular Borel probability measure μ and let Π: E → X be a continuous map with μ(X \ Π(E)) =0. Schwartz’s lemma states that there exists a Borel cross-section for Π defined almost everywhere (μ). The equivalence classes of these Borel cross-sections are in one-to-one correspondence with the representations of the form Γ:C<sub>b</sub>(E) → L<sup>∞</sup>(μ) with Γ(f∘Π) = f for every f ∈ C<sub>b</sub>(X). The representations are also in one-to-one correspondence with equivalence classes of the minimal measures on E. Now let E, X, and μ be as above and let Π: E → X be an onto Borel map. There exists a Borel cross-section for Π defined almost everywhere (μ). The equivalence classes of the Borel cross-sections for Π are in one-to-one correspondence with the representations of the form Γ:B(E) → L<sup>∞</sup>(μ) with Γ(f∘Π) = f for every f in C<sub>b</sub>(X), where B(E) is the C*-algebra of the bounded Borel functions on E. The representations are also in one-to-one correspondence with equivalence classes of the minimal measures on E. / Ph. D.

Page generated in 0.0742 seconds