• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental investigation of the effect of temporal equivalence ratio fluctuations on NO<sub>x</sub> emissions in premixed flames

Wirth, Douglas A. 06 June 2008 (has links)
The effect of temporal variations in equivalence ratio on the NO<sub>x</sub> emissions of a premixed methane-air flame was measured in a burner. The NO<sub>x</sub> emissions are compared among steady flames with spatially uniform equivalence ratio distributions, steady flames with spatially nonuniform equivalence ratio distributions, and unsteady flames with temporal equivalence ratio fluctuations. Time-varying equivalence ratio was measured optically, time-varying temperatures were measured with thermocouples, and mean NO<sub>x</sub> emissions were measured by probe sampling and a chemiluminescent analyzer. These measurements quantify the effect of temporal unsteadiness and spatial nonuniformity of equivalence ratio on NO<sub>x</sub> emissions. For lean flames, both spatial nonuniformities and temporal fluctuations in equivalence ratio contribute to an increase in NO<sub>x</sub> emissions with respect to steady uniform flames at the same mean flame temperatures. For lean flames, higher amplitude temperature fluctuations result in larger increases in NO<sub>x</sub> with respect to steady flames. The dissertation also describes the optical technique for nonintrusive temporal measurements of equivalence ratio fluctuations and techniques for thermocouple compensation at frequencies up to 10 Hz. / Ph. D.

Page generated in 0.0434 seconds