• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The sensitivity equation method for optimal design

Borggaard, Jeffrey T. 07 June 2006 (has links)
In this work, we introduce the Sensitivity Equation Method (SEM) as a method for approximately solving infinite dimensional optimal design problems. The SEM couples a trust-region/quasi-Newton optimization algorithm with gradient information provided by apprOXimately solving the sensitivity equation for (design) sensitivities. The sensitivity equation is (in the problems considered here) a partial differential equation (POE) which describes the influence of a design parameter on the state of the system. It is shown that obtaining design sensitivities from the sensitivity equation has advantages over finite difference and semi-analytical methods in that there is no need to remesh or compute mesh sensitivities (even if the domain is parameter dependent), the sensitivity equation is a linear POE for the sensitivities and can be approximated in an efficient manner using the same approximation scheme used to approximate the states. The applicability of the SEM to shape optimization problems, where the state is described by the Euler equations, is studied in detail. In particular, we prove convergence of the method for a one dimensional test problem. These results are used to speculate on the applicability of the method for more complex problems. Finally. we solve a two dimensional forebody simulator design problem (for use in wind tunnel experiments) using the SEM, which is shown to be a very efficient method for this problem. / Ph. D.

Page generated in 0.0562 seconds