• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Born-Oppenheimer approximation in scattering theory

Kargol, Armin 02 March 2006 (has links)
We analyze the Schrödinger equation i𝜖 ¬<sup>2</sup>â /â tΨ = H(𝜖)Ψ, where H(â ¬) = - f24 Î x + h(X) is the hamiltonian of a molecular system consisting of nuclei with masses of order 𝜖¬<sup>-4</sup> and electrons with masses of order 1. The Born-Oppenheimer approximation consists of the adiabatic approximation to the motion of electrons and the semiclassical approximation to the time evolution of nuclei. The quantum propagator associated with this Schrödinger Equation is exp(-itH(â ¬)/â ¬<sup>2</sup>). We use the Born-Oppenheimer method to find the leading order asymptotic expansion in â ¬ to exp(_it~(t:»Ψ, i.e., we find Ψ(t) such that: (1) We show that if H(𝜖) describes a diatomic Molecule with smooth short range potentials, then the estimate (1) is uniform in time; hence the leading order approximation to the wave operators can be constructed. We also comment on the generalization of our method to polyatomic molecules and to Coulomb systems. / Ph. D.

Page generated in 0.031 seconds