• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tensile and uniaxial/multiaxial fatigue behavior of ceramic matrix composites at ambient and elevated temperatures

Liao, Kin 20 October 2005 (has links)
Increasing use of fiber reinforced ceramic matrix composites (CMC's) materials is needed, especially for hostile environments such as elevated temperatures. However, some fundamental issues regarding how these materials should be made for optimized performance are far from being settled. This study focuses on the modeling of the tensile behavior of unidirectional CMC using statistical methods and micro-mechanical analysis, based on laboratory observations. The model can be used to examine the effect of performance-influencing parameters on the strength of unidirectional CMC, thus shed light on how such material should be put together. The tensile strength model was then modified such that the behavior of unidirectioal CMC under cyclic tensile load can be studied. Results from the tensile strength model suggest that the Weibull modulus, <i>m</i>, of the strength of the reinforcing fibers and the fiber/matrix interfacial shear stress both have significant effect on the strength and toughness of the unidirectional composite: a higher <i>m</i> value and a lower interfacial shear stress result in a lower strength; a lower value of <i>m</i> and a higher interfacial shear stress results in a higher strength but lower toughness. Calculations from the tensile fatigue model suggest that a lower <i>m</i> value results in a longer fatigue life. / Ph. D.

Page generated in 0.0613 seconds