• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buckling and postbuckling of flat and curved laminated composite panels under thermomechanical loadings incorporating non-classical effects

Lin, Weiqing 26 October 2005 (has links)
Two structural models which can be used to predict the buckling, post buckling and vibration behavior of flat and curved composite panels under thermomechanical loadings are developed in this work. Both models are based on higher-order transverse shear deformation theories of shallow shells that include the effects of geometric nonlinearities and initial geometric imperfections. Within the first model (Model I), the kinematic continuity at the contact surfaces between the contiguous layers and the free shear traction condition on the outer bounding surfaces are satisfied, whereas in the second model (Model II), in addition to these conditions, the static interlaminae continuity requirement is also fulfilled. Based on the two models, results which cover a variety of problems concerning the postbuckling behaviors of flat and curved composite panels are obtained and displayed. These problems include: i) buckling and postbuckling behavior of flat and curved laminated structures subjected to mechanical and thermal loadings; ii)frequency-load/temperature interaction in laminated structures in both pre-buckling and post buckling range; iii) the influence of a linear/nonlinear elastic foundation on static and dynamic post buckling behavior of flat/curved laminated structures exposed to mechanical and temperature fields; iv) implication of edge constraints upon the temperature/load carrying capacity and frequencyload/ temperature interaction of flat/curved structures; v) elaboration of a number of methodologies enabling one to attenuate the intensity of the snap-through buckling and even to suppress it as well as of appropriate ways enabling one to enhance the load/temperature carrying capacity of structures. / Ph. D.

Page generated in 0.0581 seconds