• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaine

Luna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma. L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD. Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire. Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9. En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood. Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9. The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one. The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1. In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
2

Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaine

Luna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma. L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD. Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire. Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9. En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood. Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9. The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one. The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1. In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
3

Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)

Ait Hamouda, Hocine 06 1900 (has links)
Les maladies cardiovasculaires (MCV) sont la principale cause de mortalité dans les pays industrialisés. L'hypercholestérolémie constitue un facteur de risque majeur pour les MCV. Elle est caractérisée par des niveaux élevés de lipoprotéines de faible densité (LDL, aussi appelé “mauvais cholestérol”). La présence prolongée de haut niveaux de LDL dans la circulation augmente le risque de formation de plaques athérosclérotiques, ce qui peut conduire à l'obstruction des artères et l'infarctus du myocarde. Le LDL est normalement extrait du sang par sa liaison au récepteur du LDL (LDLR) qui est responsable de son endocytose dans les hépatocytes. Des études génétiques humaines ont identifié PCSK9 (proprotein convertase subtilisin/kexin type 9) comme le troisième locus responsable de l'hypercholestérolémie autosomique dominante après le LDLR et son ligand l’apolipoprotéine B-100. PCSK9 interagit avec le LDLR et induit sa dégradation, augmentant ainsi les niveaux plasmatiques de LDL. Les mutations gain de fonction (GF) de PCSK9 sont associées à des niveaux plasmatiques élevés de LDL et à l'apparition précoce des MCV, alors que les mutations perte de fonction (PF) de PCSK9 diminuent le risque de MCV jusqu’à ~ 88% grâce à une réduction du LDL circulant. De ce fait, PCSK9 constitue une cible pharmacologique importante pour réduire le risque de MCV. PCSK9 lie le LDLR à la surface cellulaire et/ou dans l'appareil de Golgi des hépatocytes et provoque sa dégradation dans les lysosomes par un mécanisme encore mal compris. Le but de cette étude est de déterminer pourquoi certaines mutations humaines de PCSK9 sont incapables de dégrader le LDLR tandis que d'autres augmentent sa dégradation dans les lysosomes. Plusieurs mutations GF et PF de PCSK9 ont été fusionnées à la protéine fluorecente mCherry dans le but d'étudier leur mobilité moléculaire dans les cellules hépatiques vivantes. Nos analyses quantitatives de recouvrement de fluorescence après photoblanchiment (FRAP) ont montré que les mutations GF (S127R et D129G) avaient une mobilité protéique plus élevée (> 35% par rapport au WT) dans le réseau trans- Golgien. En outre, nos analyses quantitatives de recouvrement de fluorescence inverse après photoblanchiment (iFRAP) ont montré que les mutations PF de PCSK9 (R46L) avaient une mobilité protéique plus lente (<22% par rapport au WT) et une fraction mobile beaucoup plus petite (<40% par rapport au WT). Par ailleurs, nos analyses de microscopie confocale et électronique démontrent pour la toute première fois que PCSK9 est localisée et concentrée dans le TGN des hépatocytes humains via son domaine Cterminal (CHRD) qui est essentiel à la dégradation du LDLR. De plus, nos analyses sur des cellules vivantes démontrent pour la première fois que le CHRD n'est pas nécessaire à l'internalisation de PCSK9. Ces résultats apportent de nouveaux éléments importants sur le mécanisme d'action de PCSK9 et pourront contribuer ultimement au développement d'inhibiteurs de la dégradation du LDLR induite par PCSK9. / Coronary heart diseases (CHD) are a leading cause of death in Western societies. Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The prolonged presence of elevated levels of LDL in the circulation increases the risk of formation of atherosclerotic plaques, which can lead to obstruction of arteries and myocardial infarction. LDL is normally cleared from the blood through the binding of its sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction (LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet clearly understood. The goal of this study was to determine why some human PCSK9 mutations fail to induce LDLR degradation while others increase it in lysosomes. Several PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study their molecular mobility in living human liver cells. Our quantitative analysis of fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans- Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much slower protein mobility (<22% compared to WT) and a much slower mobile fraction (<40% compared to WT). In addition, our confocal and electron microscopy analyses demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD), which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the first time that the CHRD is not required for internalization of PCSK9. These results provide important new information on the mechanism of action of PCSK9 and may ultimately help in the development of inhibitors of the PCSK9-induced LDLR degradation.

Page generated in 0.0995 seconds