• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The research on the demand and investment willingness of energy-saving products and services for medium and small enterprises

Chang, Hung-sen 25 July 2011 (has links)
Taiwan lack natural and energy resource, need to import 99.3% energy. Due to the traditional high-carbon energy also supply from abroad, its supply will be impacted by international demand and production, price fluctuations, and the international politics. In recent years the international oil price surged upward, business costs were constantly raise. In this study, some small and medium businesses are taken as objects in Kaohsiung, Taiwan. In this investigation, understand the application of energy resource in those businesses, different industries have their attention to other items and differences, it can be seen on those small and medium enterprises in the concept and practice by measuring and computing power consumption. Research Methods: First, to explore the international and domestic energy and policy and the related energy research literature, interview the small and medium enterprises and observe the way of energy usage, and provide the improving solution, questionnaires and field measurements made on those enterprises, to record the response, investment willingness and problem for energy improving, statistical analysis and get the conclusion. The results showed that the prevalence among the small businesses¡¦ waste of energy, there is many invalid lighting, it is the room to improve the installation of reflective shade to effect the lighting, even replace the lamps (T8) to lamps (T5) with reflective shade, then reduce the use of lamps and power, indirectly to reduce the power consumption of air condition. This research also found there is considerable room to improve the light in the refrigerated cabinet. The traditional fluorescent lamps(T8) be used in the refrigerated cabinet. The performance is low and produce high temperature, then the refrigerated cabinet shall expand more power to reach the set temperature, if change those lamps to LED lamps could immediately reduce the loss of electricity bills. Extension of this study, there is a great improvement in the domestic building and enterprises on lighting application, it could reduce a lot of power consumption by detailed observing, detected, and improving engineer to remove lighting waste, and thus achieve carbon reduction targets by 20% of the electricity.
2

Study of the Effect of Light Emitting Diode (LED) on the Optimum Window-to-Wall Ratio and Whole-Building Energy Consumption in Open Offices

Zolfaghari, Zahra 21 October 2020 (has links)
Daylight harvesting is an essential strategy that is often used to enhance both the design and performance of an architectural project. Windows, as crucial architectural elements, not only admit natural light into spaces but also provide the occupants with visual connections. However, the excessive usage of windows brings an uncontrolled amount of solar energy to the spaces and negatively affect the building's energy performance. When utilizing passive design strategies such as daylight harvesting, several parameters, including the electrical lighting system, can impact the outcome. The current study investigates the role of lighting systems on daylight harvesting's effectiveness and their impact on window dimension and total energy consumption. In this study, the optimum window-to-wall ratio of an open office in the presence of two different light sources (LED and fluorescent) is explored through a computer simulation method. A combination of tools including AGi32, ElumTools, OpenStudio, EnergyPlus, Radiance, and MATLAB helps to conduct the simulation and deliver optimal results. In the results and conclusion chapter, the study provides guidelines to specify optimal window percentages considering two lighting systems in each cardinal direction. Importantly, the guideline focuses only on energy performance and not on the spatial quality of the design. / Master of Architecture / Harnessing daylight with the use of windows helps to offset parts of the electric lighting needs, and decrease the total building energy consumption. This is accomplished by using glazed materials to admit daylight and lighting control systems, which can respond to the dynamic light level. However, improper implementation of a passive daylighting strategy may cause increased energy consumption. Sunlight is accompanied by solar heat radiation which can increase the HVAC load of a space and compromise the energy savings achieved by daylighting. Therefore, a balance between solar heat and light gain is required to fully take advantage of solar energy without reverse impacts. Concerning the mentioned balance, recent advancements in lighting technology question the effectiveness of natural light in reducing whole-building energy consumption. Due to the high energy efficiency of LED luminaires, lighting power consumption is rather low, even when the lighting system operates at full capacity. Therefore, it is unclear whether the solar energy coming through glazed materials works to the advantage or disadvantage of total building energy consumption. This study hypothesized that the total energy consumption of an open office with LED luminaires would be less in absence of solar energy compared to a scenario which utilizes the solar energy. A simulation-based methodology, using a combination of photometric computation and building energy simulation tools, was utilized to examine the hypothesis and explore the impacts of lighting systems on the optimum window-to-wall ratio. The results provide a helpful guideline which highlights the impact of lighting systems on window dimensions and their mutual effect on whole-building energy consumption. Although the optimum window-to-wall ratios suggested by this study only concern energy consumption, integration of them with occupants' preferences can propose an acceptable window-to-wall ratio that satisfies both design quality and performance of a building.

Page generated in 0.0667 seconds