• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Separace peptidů na nové stacionární fázi na bázi cyklofruktanu, charakterizace separačního systému / Separation of peptides on a newly designed cyclofructan-based stationary phase, characterization of separation system

Šímová, Veronika January 2013 (has links)
Hydrophilic interaction liquid chromatography is in the present time very often used for separation of polar compounds which are complicated separated in reverse phase HPLC or they are not sufficiently retained. Various stationary phases suitable for HILIC are commercially available and new stationary phases are still developing. In this work bare silica and isopropyl cyclofructan modified silica stationary phases were compared. Chromatographic behavior of sets of four pentapeptides and five nonapeptides was tested in detail under hydrophilic interaction liquid chromatography. Additionally, mobile phase composition changes the types of interaction and their strengths were studied using linear free energy relationship method. Obtained results denoted that the main role in the retention mechanism on the isopropyl cyclofructan stationary phases play hydrogen bond acidity and dipolarity/polarizibility, while dispersion interactions are preferred in the mobile phase. On the other hand, bare silica stationary phase provides only one interaction type - hydrogen bond acidity. Key words: peptides, cyclofructan, LFER, HILIC
2

Predicting Chemical and Biochemical Properties Using the Abraham General Solvation Model

Mintz, Christina 05 1900 (has links)
Several studies were done to illustrate the versatillity of the Abraham model in mathematically describing the various solute-solvent interactions found in a wide range of different chemical and biological systems. The first study focused on using the solvation model to construct mathematical correlations describing the minimum inhibitory concentration of organic compounds for growth inhibition towards the three bacterial strains Porphyromonas gingivalis, Selenomonas artemidis, and Streptococcus sobrinus. The next several studies expand the practicallity of the Abraham model by predicting free energies of partition in chemical systems. The free energy studies expand the use of the Abraham model to other temperatures and properties by developing correlations for the enthalpies of solvation of gaseous solutes of various compounds dissolved in water, 1-octanol, hexane, heptane, hexadecane, cyclohexane, benzene, toluene, carbon tetrachloride, chloroform, methanol, ethanol, 1-butanol, propylene carbonate, dimethyl sulfoxide, 1,2-dichloroethane, N,N-dimethylformamide, tert-butanol, dibutyl ether, ethyl acetate, acetonitrile, and acetone. Also, a generic equation for linear alkanes is created for use when individual datasets are small. The prediction of enthalpies of solvation is furthered by modifying the Abraham model so that experimental data measured at different temperatures can be included into a single correlation expression. The temperature dependence is directly included in the model by separating each coefficient into an enthalpic and entropic component. Specifically, the final study describes the effects of temperature on the sorption coefficients of organic gases onto humic acid. The derived predicted values for each research study show a good correlation with experimental values.
3

Sorption Modelling of Np(IV), Np(V), and Pd(II) on Illite and Montmorillonite Under High Ionic Strength Conditions

Goguen, Jared 11 1900 (has links)
A database is being developed by the NWMO that will be capable of predicting sorption for key elements of interest onto crystalline and sedimentary rocks in the highly saline groundwaters and porewaters at DGR depths in Ontario, Canada. Pd(II), Np(IV), and Np(V) have all been identified as elements of interest by the NWMO. Sorption experiments of Pd(II) were conducted on illite, bentonite, and shale to investigate the effects that ionic strength (I), and pH have on sorption. Na-Ca-Cl solutions ranging from 0.01 – 6.0 M I with pH values between 3 and 9 were considered under aerobic conditions at 25°C for sorption testing conditions. Sorption data for Pd(II), Np(IV), and Np(V) was used with 2SPNE SC and 2SPNE SC/CE models developed in PHREEQC to model sorption onto illite and montmorillonite at different values of I and pH. These models were also used to test proposed reaction constants from various sources in the existing literature, and to establish and propose optimized surface complexation constants of our own. Optimized reaction constants were compared with the LFER to determine its validity across all test conditions. The LFER was found to not adequately describe sorption of Pd(II), Np(IV), or Np(V) on either illite or montmorillonite. The JAEA TDB, R04, and R07 THEREDA were all tested along with the Davies, Debye-Hückel, SIT, and Pitzer computational methods in order to determine their overall accuracy. The JAEA TDB using the SIT computational method was found to not be capable of modelling Np(IV) onto illite or montmorillonite in 4.0 M I. / Thesis / Master of Applied Science (MASc)
4

Comparison of lipid membrane-water partitioning with various organic solvent-water partitions of neutral species and ionic species: Uniqueness of cerasome as a model for the stratum corneum in partition processes

Zhang, K., Fahr, A., Abraham, M.H., Acree, W.E. Jr., Tobin, Desmond J., Liu, Xiangli 08 June 2015 (has links)
Yes / Lipid membrane-water partitions (e.g., immobilized artificial membrane systems where the lipid membrane is a neutral phospholipid monolayer bound to gel beads) were compared to various organic solvent-water partitions using linear free energy relationships. To this end, we also measured the retention factors of 36 compounds (including neutral and ionic species) from water to liposomes made up of 3-sn-phosphatidylcholine and 3-sn-phosphatidyl-l-serine (80:20, mol/mol), employing liposome electrokinetic chromatography in this work. The results show that lipid membranes exhibit a considerably different chemical environment from those of organic solvents. For both neutral species and ionic species, partitions into the more polar hydroxylic solvents are chemically closer to partition into the lipid membrane as compared to partitions into the less polar hydroxylic solvents and into aprotic solvents. This means that solutes partition into the polar parts of lipid membranes, regardless of whether they are charged or not. In addition, cerasome (i.e., liposome composed mainly of stratum corneum lipids) was compared with regular phospholipid liposomes as a possible model for human stratum corneum in partitions. It was found that the cerasome-water partition exhibits a better chemical similarity to skin permeation. This is probably due to the unique structures of ceramides that occur in cerasome and in the stratum corneum lipid domain. We further show that membranes in membrane-water partitions exhibit very different properties.
5

Charakterizace interakcí fluorované stacionární fáze Rtx-200MS s analyty metodou inverzní plynové chromatografie / Characterization of interactions between Rtx-200MS fluorinated stationary phase and analytes by inverse gas chromatography

Vrzal, Tomáš January 2014 (has links)
Fluorinated stationary phase in Rtx-200MS column have been characterized by determination of system constants of Abraham equation. Retention on this phase is driven by dispersive and orientation/induction forces. Significant interaction contribution of lone pair electrons or π- electrons provides unique selectivity for analytes with excess of electron density. Unusual behavior of this phase have been determined by study of separation mechanism of polar and nonpolar analytes, in comparison of their separation on polar and nonpolar phases. This behavior is due to medium polarity of the phase (system constant s), which is not so pronounced to cancel separation of nonpolar analytes due to induction forces. In some cases contribution of lone pair electrons or π-electrons can contribute to this separations. Key words fluorinated stationary phase Rtx-200MS, inverse gas chromatography, LFER method, Abraham's equation
6

The prediction of blood–tissue partitions, water–skin partitions and skin permeation for agrochemicals

Abraham, M.H., Gola, J.M.R., Ibrahim, A., Acree, W.E. Jr., Liu, Xiangli 13 October 2013 (has links)
Yes / BACKGROUND: There is considerable interest in the blood–tissue distribution of agrochemicals, and a number of researchershave developed experimental methods for in vitro distribution. These methods involve the determination of saline–blood andsaline–tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution.RESULTS: The authors set out equations for gas–tissue and blood–tissue distribution, for partition from water into skin andfor permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equationscan be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivoblood–tissue distribution where available. The predictions require no more than simple arithmetic.CONCLUSIONS: The present method represents a much easier and much more economic way of estimating blood–tissuepartitions than the method that uses saline–blood and saline–tissue partitions. It has the added advantages of yielding therequired in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin andpermeation from water through skin.
7

Predicting the skin-permeating components of externally-applied medicinal herbs: application of a newly constructed linear free-energy relationship equation for human skin permeation

Zeng, X., Wang, Z., Liu, Xiangli, Chen, M., Fahr, A., Zhang, K. 06 May 2018 (has links)
No / A linear free-energy relationship (LFER) equation that is able to provide a valid prediction of the skin permeability coefficients (log Kp) of neutral molecules, ions and ionic species has recently been constructed and optimized. This study aimed to evaluate the feasibility of predicting the skin-permeating components (SPCs) of externally applied herbs using the LFER equation, with Evodiae fructus (EF) taken as a model herb. The log Kp values of the reported chemical components of EF at pH 4.0 were calculated using the LFER equation and their structural descriptors. The results showed that the essential oils, quinolone, acridone and indole alkaloids of EF are more permeable when compared to other main components, such as phenylpropanoids, furoquinoline alkaloids, limonoids and flavonoids. The SPCs of EF were further collected via ex vivo skin permeation experiments, and analyzed by liquid chromatography-high resolution tandem mass spectrometry. A total of 80 SPCs were detected, and part of them were tentatively identified based on their empirical molecular formulae and MS/MS spectra. The SPCs are made up of 58 alkaloids, including 23 or more quinolone alkaloids, 14 or more indole alkaloids and 1 acridone alkaloid, and 22 non-alkaloids, including 7 or more essential oils and 1 flavonoid, which is in good agreement with the prediction by the LFER equation. It is suggested that a log Kp of −7.0 may be considered as a borderline, above which are potential SPCs and below which are non-SPCs. Very interestingly, the primary SPCs give a good explanation to the antihypertensive action of externally applied EF. To sum up, the LFER equation can be used to predict the SPCs of externally applied herbs, and thus to narrow the range of their potential effective components and speed up the pharmacological study. / This study was supported by the National Natural Science Foundation of China (Grant No. 81703939 and 81503221), the China Postdoctoral Science Foundation (Grant No. 2017M620403), the Project of Industry, Education and Research Funds of Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Grant No. FJMBIO1608), the Science and Technology Planning Project of Fujian Province (Grant No. 2017Y4015), the Natural Science Foundation of Guangdong Province (Grant No. 2014A030310365), the Natural Science Foundation of Hubei Province (Grant No. 2014CFC1045) and the Fundamental Research Funds for the Central Universities (Grant No. 20720150069), as well as the Clinical Medical Research Program of Wuhan Health and Family Planning Commission (Grant No. WX15A02).
8

Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro

Liu, Xiangli, Zhang, K., Abraham, M.H. 08 November 2018 (has links)
No / The aim of the present work is to evaluate the similarity between PDMS membranes and human skin in vitro in permeation study by linear free energy relationship (LFER) analyses. The values of the permeability coefficient log Kp (cm/s) under reliable experimental conditions were collected from the literature for a set of 94 compounds including both neutral and ionic species, which cover a broad range of structural diversity. The values of log Kp (cm/s) have been correlated with Abraham descriptors to yield an equation with R2 = 0.952 and SD = 0.38 log units. The established LFER model for log Kp (cm/s) across PDMS membranes showed no close analogy with that through human skin in vitro. A further critical analysis of the coefficients of the LFER models confirmed that the PDMS permeation system is a very poor model for human skin permeation.
9

APPLICATION OF LINEAR FREE ENERGY RELATIONSHIPS IN THE PREDICTION OF TRIGLYCERIDE/WATER PARTITION COEFFICIENTS AND LIPID BILAYER PERMEABILITY COEFFICIENTS OF SMALL ORGANIC MOLECULES AND PEPTIDES

Cao, Yichen 01 January 2008 (has links)
Computational methods such as linear free energy relationships (LFERs) offer a useful high-throughput solution to quickly evaluate drug developability, e.g. membrane permeability, organic solvent/water partition coefficients, and solubility. LFERs typically assume the contribution of structural components/functional groups to the overall properties of a given molecule to be constant and independent. This dissertation describes a series of studies in which linear free energy relationships were developed to predict solvation of small organic molecules in lipid formulations, specifically, triglyceride containing solvents and phospholipid-based liposomes. The formation of intermolecular HBs in triglyceride solvents (homogenous with H-bond accepting ability) and intramolecular HBs within the bilayer barrier domain (hydrocarbon-like) proved to be the major factors to consider in developing LFERs to account for the increased oil/water partition coefficients and enhanced bilayer permeability of small organic molecules. The triglyceride solvent/water partition coefficients of a series of model compounds varying in polarity and H-bond donating/accepting capability were used to establish a correlation between the solvent descriptors and the ester concentration in these solvents using the Abraham LFER approach. The LFER analyses showed that the descriptors representing the polarizability and H-bond basicity of the solvents vary systematically with the ester concentration. A fragment-based LFER to predict membrane permeability or 1,9- decadiene/water partition coefficients of small organic molecules including small peptides was systematically constructed using a total of 47 compounds. Significant nonadditivity was observed in peptides in that the contribution of the peptide backbone amide to the apparent transfer free energy from water into the bilayer barrier domain is considerably smaller than that of a “well-isolated” amide and greatly affected by adjacent polar substituents on the C-termini. In order to explain the phenomenon of nonadditivity, the formation of intramolecular HBs and inductive effects of neighboring polar groups on backbone amide, were investigated using FTIR and MD simulations. Both spectroscopic and computational results provided supportive evidence for the hypothesis that the formation of intramolecular HBs in peptides is the main reason for the observed nonadditivity of Δ(ΔG°)-CONH-. The MD simulation results showed that the inductive effect of neighboring groups is not as important as the effect of intramolecular HBs.
10

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>

Page generated in 0.0202 seconds