• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Modelling for Electric Machines Using Thermal Capacitance Calculation Method: External Rotor Switched Reluctance Motor Case Study

Trickett, Elizabeth January 2020 (has links)
This thesis characterizes the transient thermal response of a 12/16 External Rotor Switched Reluctance Machine (ERSRM) for an E-bike application. A method for calculating coil capacitance based on machine design parameters was introduced and implemented into a standard commercial Lumped Parameter Thermal Network (LPTN). A sizing criterion was proposed for the cuboid number in a physically accurate LPTN coil model design. This sizing criterion considers the change in model size with motor speed or forced convection. The LPTN with a more accurate calculation of capacitance within the coil and a known number of cuboids in the coil was validated with experimental results. An analytical proof was provided that a small number of capacitances is not sufficient to model a typical power-dense coil design. The validated model was used to study the impact of a more accurate capacitance calculation method on motor temperature. Both overload and rated operation were investigated. During overload conditions, it was found that the standard capacitance calculation from commercial software massively underestimated the heating rate and peak temperature of the coil hot spot, even with the same number of cuboids. The capacitance of the rest of the motor was able to be varied and investigated for its effects on cooldown dynamics. It was found that for short-time transients the coil could be assumed to act adiabatically in this operating range. Operating points across the operating envelope for the motor under study were mapped to determine the region where the adiabatic assumption could be made. It was shown that a transition occurred where the adiabatic assumption ceases to be valid. / Thesis / Doctor of Philosophy (PhD) / This thesis deals with the thermal modelling of electric machines for traction applications using lumped parameter thermal modelling. A novel approach is presented for calculating and distributing thermal capacitance in motor coils. A 12/16 External Rotor Switched Reluctance Motor is characterized based on its transient thermal response and the novel methods proposed are validated. The sizing of a coil-based thermal model is discussed and a criterion for physical validity proposed. The validated model is used in a sensitivity analysis of coil and motor capacitances. For severe overload conditions and short periods, a result is obtained showing the coil can be modelled as adiabatic. Finally, a rated load condition is tested, and a transition is suggested between overload conditions and non-overload conditions.
2

Thermal Modelling of Permanent Magnet Synchronous Motor Windings in Heavy-Duty Electric Vehicles

Dahl, Ken January 2023 (has links)
A significant challenge with permanent magnet synchronous motors (PMSMs) is thermal management. Thermal stress can lead to irreversible damage to components, and to enable efficient cooling, a thermal model is needed. In this thesis paper, methods for estimating the hot spot temperature of the windings in PMSMs used in heavy-duty EVs are investigated. The methods include black-box models and lumped parameter thermal network-based models. The results reveal that the implemented models are not sufficient for achieving the desired accuracy, and indicate that more parts of the windings need to be considered.

Page generated in 0.0164 seconds