• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controller Design of Multivariable LTI Unknown Systems

Wang, William Szu-Wei 04 September 2012 (has links)
This thesis deals with the design of multivariable controllers for stable linear time-invariant multi-input multi-output systems, with an unknown mathematical model, subject to constant reference/disturbance signals and actuator saturation constraints. A new controller parameter optimization approach, which can be carried out experimentally with no knowledge of the plant model nor of the order of the system, is proposed. The approach has the advantage that controllers can be optimized by perturbing only the initial conditions of the servocompensator, and that the order of the resulting controller obtained can be specified by the designer. Implementation of the proposed controller design approach is described, and an experimental application study of the proposed method applied to a multivariable system with industrial sensor/actuator components is presented to illustrate the feasibility of the design method in an industrial environment.
2

Controller Design of Multivariable LTI Unknown Systems

Wang, William Szu-Wei 04 September 2012 (has links)
This thesis deals with the design of multivariable controllers for stable linear time-invariant multi-input multi-output systems, with an unknown mathematical model, subject to constant reference/disturbance signals and actuator saturation constraints. A new controller parameter optimization approach, which can be carried out experimentally with no knowledge of the plant model nor of the order of the system, is proposed. The approach has the advantage that controllers can be optimized by perturbing only the initial conditions of the servocompensator, and that the order of the resulting controller obtained can be specified by the designer. Implementation of the proposed controller design approach is described, and an experimental application study of the proposed method applied to a multivariable system with industrial sensor/actuator components is presented to illustrate the feasibility of the design method in an industrial environment.

Page generated in 0.0679 seconds