231 |
The Role of e-Antigen in Hepatitis B InfectionSaul, April Leigh 29 June 2015 (has links)
Mathematical modeling of biological systems has improved the knowledge of scientists for many years. In virology, particularly in the study of hepatitis B virus, mathematical models were used to explain interactions between hepatitis B virus and the human host in the absence and presence of interventions such as drug therapy and vaccines. This thesis seeks to explain the role of e-Antigen, a particle produced by hepatitis B virus, in the pathogenesis of hepatitis B infection. To accomplish this goal, I will provide biological background as well as previous modeling work on the role of e-Antigen in hepatitis B virus infection, before finally developing a new model adapted specifically for connecting hepatitis B progression with e-Antigen and drug therapy. I will analyze the model both analytically and numerically, fit it to virus data from humans chronically infected with hepatitis B that undergo drug therapy, and draw conclusions about the relation between drugs, immune activation, and loss of e-Antigen. / Master of Science
|
232 |
Surface Immunolocalisation of HPr in the Equine Pathogen Streptococcus equiDixon, S., Haswell, M., Harrington, Dean J., Sutcliffe, I.C. 12 1900 (has links)
No / We have investigated the surface localisation of the phosphotransferase system protein HPr in the equine pathogen Streptococcus equi subsp. equi using immunogold localisation and transmission electron microscopy. Like the LppC acid phosphatase lipoprotein, a reference surface antigen, the S. equi HPR could be clearly detected on the surfaces of intact cells. This study is consistent with previous reports that some streptococcal HPr is cell surface associated and suggests that the extracytoplasmic mobilisation and transfer of phosphate groups by streptococci warrant further investigation.
|
233 |
Shigella flexneri Lipopolysaccharide Modifications in the Presence of Bile SaltsBauwens, Ciara January 2019 (has links)
Thesis advisor: Christina Faherty / Shigella, a Gram-negative bacterial pathogen, induces inflammation and diarrhea by invading the colonic epithelium. Annually, millions of Shigella infections occur globally, mainly in malnourished children. Despite extensive research, no effective vaccine exists. This work explores the mechanisms of Shigella proliferation before colonic infection, where an adverse environment is encountered, including bile salts exposure. One means of bile salts evasion is possibly lipopolysaccharide (LPS) modification. LPS—O-antigen, the polysaccharide core, and the lipid A—is a crucial outer membrane component for virulence. Transposon mutant analysis suggested a role of LPS in bile salts resistance; thus, the goal of this study was to define Shigella LPS modifications following bile salts exposure. LPS mutants were investigated to distinguish crucial components of the LPS structure for bile salts resistance. Mutants were analyzed relative to wild type for growth in bile salts and biofilm formation. The LPS from all strains was purified and analyzed by polyacrylamide gel electrophoresis. Stained gels show modifications in the Oag, lipid A, and core components. Key bands were sent for mass spectrophotometry sequencing. Results indicate that the O-antigen regulates Shigella bile salts resistance, as the complete O-antigen deletion mutant and partial deletion mutants exhibited slow growth in bile salts and failed to form a biofilm in the presence of bile salts. This work highlights the importance of bile salts exposure for Shigella in future targeted antibodies against the pathogen. / Thesis (BS) — Boston College, 2019. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Biology.
|
234 |
Příprava a charakterizace rekombinantního adenylát cyklázového toxoidu bakterie Bordetella pertussis nesoucího mykobakteriální antigen TB7.7 / Construction and characterization of recombinant adenylate cyclase toxoid of bacterium Bordetella pertussis carrying mycobacterial antigen TB7.7Mikulecký, Pavel January 2010 (has links)
Bacterium Mycobacterium tuberculosis is an etiological agent of a deadly disease called tuberculosis that presents a global problem. According to The World Health Organization there are more than 2 billions people infected with latent tuberculosis all over the world. There is still need of specific, sensitive, quick and economic available method for identification of infected individuals. Currently in vitro blood tests are considered to be the best way of diagnosis. They are based on restimulation of specific T lymphocytes by mycobacterial antigens derived from virulent strains. There are several different approaches for enhancing of direct antigen delivery into antigen presenting cells and promising one is a genetically detoxified adenylate cyclase toxin (CyaA) of bacteria Bordetella pertussis. The main aim of the thesis includes construction and subsequent characterization of biological properties of CyaA protein carrying specific mycobacterial antigen TB7.7 in translocating domain. Here is shown that fusion protein CyaA-TB7.7 can form cation selective pores in target cell membranes and is able to deliver antigens into the cytosol of APC to be presented on surface with molecules MHC class II. Genetically detoxified CyaA- TB7.7 protein will be used to supplement current approaches such as also in vitro...
|
235 |
Příprava experimentálního systému pro studium životního cyklu myšího polyomaviru / Experimental system for the mouse polyomavirus life cycle studyPergner, Jiří January 2010 (has links)
Experimental system for the mouse polyomavirus life cycle study Abstract: Murine polyomavirus (MPyV) is the prototype of the Polyomaviridae family. This family includes also some important human pathogens (BKV, JCV, Merkel cell polyomavirus). Due to their specific properties viruses within this family may serve as versatile vectors for gene therapy or recombinant vaccine production. New methodological approaches may help to understand some yet unknown facts about MPyV life cycle. Clarification of some processes during murine polyomavirus life cycle may be also important to fully exploit polyomaviruses for therapeutic purposes. The aim of this diploma thesis was to preparare two innovative experimental systems that extend possibilities of studying the life cycle of MPyV. The first part of the diploma thesis focusses on construction of recombinant MPyV which expresses yellow fluorescent protein (EYFP) in the early stages of infection. Such virus can be very useful for studying the infection spreading by live- cell imaging and Fluorescence-Activated Cell Sorting (FACS) and can be employed for co- localization studies of YFP-tagged LT antigen with certain cellular proteins. Second part of the diploma thesis describes preparation of a hybrid cell line prepared by fusion of mouse and monkey cells. This new cell...
|
236 |
Generation and analysis of transgenic mice expressing ovalbumin as a neo-self antigen under control of the myelin basic protein promoter / Generation and analysis of transgenic mice expressing ovalbumin as a neo-self antigen under control of the myelin basic protein promoterToben, Catherine Gisela January 2005 (has links) (PDF)
In this project two novel murine autoimmune models were to be established in an attempt to further investigate the nervous system disorders of Multiple Sclerosis and Guillain Barré Syndrome. Previous experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) models have demonstrated that T cells play a major role in these diseases. Which roles CD4 and CD8 T cells specifically have in the initiation, propagation and termination of an autoimmune nervous system disorder remains controversial. To this end two transgenic mice specifically expressing the neo-antigen (Ag) ovalbumin (OVA) in either the central nervous system (CNS) or peripheral nervous system (PNS) were to be generated. The myelin basic protein (MBP) is a major component of the myelin sheath both within the CNS and the PNS. Therefore the MBP promoter was employed for its distinct regulatory elements to facilitate exclusive CNS or PNS OVA expression. The adoptive transfer of OVA specific MHCI restricted (OT-I) and MHCII restricted (OT-II) TCR Tg T cells extended the OVA Tg mouse model by allowing potentially encephalitogenic T cells to be tracked in vivo. Specificity for the target Ag should enable the dynamic role of antigen specific T cells in neuroinflammatory diseases to be revealed in more detail. / Im Rahmen der vorliegenden Arbeit wurden zwei neue Mausmodelle für Autoimmunerkrankungen etabliert, um weitere Fortschritte bei der Aufklärung der zellulären und molekularen Interaktionen bei den Erkrankungen des Nervensystems Multiple Sklerose und Guillain Barré Syndrom zu erzielen. In früheren Experimenten mit EAE (experimentelle autoimmune Enzephalomyelitis) und EAN (experimentelle autoimmune Neuritis) konnte bereits gezeigt werden, dass T-Zellen eine Hauptrolle bei diesen Erkrankungen spielen, wobei jedoch die Bedeutung von CD4 bzw. CD8 T-Zellen im Einzelnen noch nicht aufgeklärt ist. Zu diesem Zwecke sollten zwei transgene (Tg) Mauslinien generiert werden, die speziell entweder im peripheren (PNS) oder im zentralen (ZNS) Nervensystem das Zielantigen OVA exprimieren. MBP ist eine Hauptkomponente der Myelinscheide sowohl im ZNS als auch im PNS. Daher kam der Myelin Basic Protein (MBP) Promoter zum Einsatz, dessen unterschiedliche regulatorischen Elemente eine Expression von intaktem OVA ausschließlich im ZNS bzw. ausschließlich im PNS steuern können. Eine Erweiterung dieser OVA tg Mausmodelle stellte der adoptive Transfer von OVA spezifischen MHCI-restringierten OTI und MHCII-restringierten OTII T-Zellen dar, da es so möglich wurde, potentiell enzephalitogene T-Zellen in vivo zu verfolgen. Dadurch sollte ebenfalls eine detailliertere Darstellung der dynamischen Rolle von antigenspezifischen T-Zellen bei neuroinflammatorischen Erkrankungen ermöglicht werden.
|
237 |
Characterization of Antigenic Properties and High Throughput Protein PurificationSteen, Johanna January 2010 (has links)
To understand the cellular processes, knowledge of the localization and function of proteins are essential. There are several high throughput ventures examining the human proteome. However, there are some bottlenecks in these ventures. For example the production and expression of soluble proteins for analysis. Another obstacle for affinity proteomics is the generation of high quality antibodies, invaluable tools in biotechnological applications. The objective in this thesis was to facilitate protein purification and sample preparation before analysis and downstream applications. We also aimed to attain more information on what constitutes an ideal immunogen, and on how different immune systems respond to a common amino acid sequence. In one of the projects an automated purification set-up was developed to ensure high recovery of up to milligram amounts of protein with high purity. The system allowed up to 60 recombinant proteins to be purified under both native and denaturing conditions. In another project, the same developed set-up was additionally shown to work with an alternative chromatography resin with small adjustments. Instead of immobilized metal ion affinity chromatography, used in the first project, ion exchange chromatography was applied under denaturing conditions, with good results. To further automate the production line in high throughput projects, an automated sample preparation was set up for mass spectrometry and e.g. gel electrophoresis analysis. We showed that a crude cell lysate could be used as input in the magnetic bead based system, and totally absent from manual handling, the output was purified and buffer exchanged samples ready for mass spectrometry analysis, as well as a fraction of sample that could be used for complementary analyses, for example gel electrophoresis to determine the protein concentration and purity. The other objective was – as noted – to gain better comprehension of antibody generation to foreign proteins, and to shed more light over how to design a good antigen. First was a solubility assay developed that determined the remaining fraction of soluble protein after reduction of the concentration of denaturing agent. The assay was performed in a 96 deep well plate, and only instrumentation available in a standard laboratory was necessary. The fact that the assay could be automated on a pipetting robot, increased the throughput and reduced the necessary manual handling. Obtained information on antigen solubility was correlated to the cognate antibody titers. At average the antibody yield was higher when a soluble antigen was used for immunization. Also, the probability of failing in eliciting an immune response was increased if an insoluble antigen was used. However, the antibody titers in each solubility class were highly diverse, and thus also some insoluble antigens were found that provoked the immune system. To further examine the differences between different B cell repertoires, a massive epitope mapping was performed with more than 400 different antisera reacting to the same amino acid sequence. Antigenic hot spot regions were discovered, as well as regions depleted in antibody recognition. However, in one third of the antisera the most abundant antigenic region did not elicit any binding of antibodies. This further validates the conclusion that good antigen design is essential, however is it not certain the outcome of immunizations can ever be determined a priori due to the variability between hosts. An alternative to immunization is selection of affinity reagents by phage display. In the last project an initial parallelized set-up selected antibody fragments that showed high specificity and were compatible with several biotechnological applications, making the set-up a promising alternative to conventional immunization in proteome-wide endeavors. / QC 20101102
|
238 |
Practical applications for an actomyosin-based biosensor in Baltic Sea waterPennsäter, Maria January 2013 (has links)
Seawater and wastewater all around the world contain toxins and pollutants, not the least drug residues, including hormoneswhich disturb the ecosystems and antibiotics with growing multi-drug resistance of bacteria as a result. The effects onecosystems and mankind can be severe and with this general fact the need for proper analysis devices increases. This haspromoted further studies to establish devices for detection of analytes with high selectivity and high sensitivity. In this thesis Ipresent a unique device exploiting capture of antigen on antibody conjugated actin filaments and subsequent transportationof the antigen in Baltic Sea water using heavy meromyosin (HMM) motor fragments from muscle myosin. The model-antibody,anti-rIgG, used in the study, was covalently attached to the actin filaments, capturing a model-analyte, rIgG that was dissolvedin the Sea water. Furthermore, the effect of Baltic Sea water on HMM propelled actin filament transportation in the in vitromotility assay was studied. An effect was observed with Baltic Sea water, supplemented with standard adenosine 5’-triphosphate (ATP) and oxygen scavenger systems, reducing the sliding velocity by approximately 80%. However the effect wasreversible which is of great advantage in relation to the development of a future biosensor device incorporating actomyosindriven transports. Additionally, evidence was found that the substance A slightly enhanced the function of the proteins whenstored on a motility assay surface at 4-8 °C for up to ten days, of value for practical applications of a potential biosensordevice. The results demonstrate the potential that antigen from sea water could be captured and transported by actomyosinto certain detector areas and eventually become concentrated which would increase the sensitivity of the device.
|
239 |
Immunomodulatory role of flagellin in antigen-presenting cellsVicente-Suarez, Ildefonso. January 2007 (has links)
Dissertation (Ph.D.)--University of South Florida, 2007. / Title from PDF of title page. Document formatted into pages; contains 104 pages. Includes vita. Includes bibliographical references.
|
240 |
Proteomic investigation of the HIV receptors CD4 and DC-SIGN/CD209 membrane protein interactionsBernhard, Oliver January 2004 (has links)
Zugl.: Sydney, NSW, Univ. of Sydney, Diss., 2004 / Hergestellt on demand
|
Page generated in 0.064 seconds