• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A casualidade nas fotografias de Moyra Davey e a lógica do índice

BERNABE, M. P. 02 May 2017 (has links)
Made available in DSpace on 2018-08-01T23:30:13Z (GMT). No. of bitstreams: 1 tese_10958_Dissertação Marianna.pdf: 58609148 bytes, checksum: 537a8ab8d4f35eb2e7a3339d24bb8200 (MD5) Previous issue date: 2017-05-02 / Este trabalho discute a ideia da casualidade, desenvolvida pela artista Moyra Davey em textos e trabalhos fotográficos, associando-a à lógica do índice da semiótica de Charles Sanders Peirce como ela é desenvolvida pela crítica de arte Rosalind Krauss em seus textos Notas sobre o índice: Parte 1, Notas sobre o índice: Parte 2 e Marcel Duchamp ou o Campo Imaginário. Palavras-chave: Moyra Davey, fotografia, lógica do índice, Rosalind Krauss
2

On the semiclassical limit of the defocusing Davey-Stewartson II equation / Sur la limite semi-classique de l'équation de Davey-Stewartson II défocalisant

Assainova, Olga 30 November 2018 (has links)
La méthode de diffusion inverse est la plus efficace dans la théorie des systèmes intégrables. Introduite dans les années soixantes, d'importants résultats ont été obtenus pour les problèmes de dimension 1+1 et notamment sur l'interaction de solitons. Depuis quelques années, l'intérêt est porté sur des problèmes de dimensions supérieures comme les équations de Davey-Sterwartson, une généralisation de l'équation intégrable de Schrödinger cubique non linéaire en dimension 1+1. Des études numériques en limite semi-classique de l'équation de Davey-Stewartson II (DSII) défocalisant, font apparaître des points communs avec le cas réduit unidimensionnel, par exemple sur l'existence d'ondes de choc dispersives : des conditions initiales lisses mènent à une région d'oscillations rapides et modulées dans le voisinage des chocs des solutions des équations non dispersives dotées des mêmes conditions initiales.Cette thèse donne les premières étapes pour l'étude analytique de ce problème basée sur la méthode de la transformée de diffusion inverse. Les deux types de méthodes, directe et inverse, pour l'équation de DSII permettent de réécrire le problème sous la forme des équations D-bar. On considère la transformée spectrale directe pour l'équation DSII avec des conditions initiales lisses en limite semi-classique. La transformée spectrale directe mène à un système de Dirac elliptique singulièrement perturbé en deux dimensions. On introduit une méthode de type BKW pour ce problème et on montre qu'il est bien défini pour des paramètres spectraux k ∈ ℂ dont les modules sont suffisamment grands en controllant la solution d'une équation eikonale non linéaire. Aussi cette méthode donne des résultats numériques précis pour de tels k en limite semi-classique. Ces résultats reposent sur la solution numérique du système de Dirac singulièrement perturbé et la solution numérique du problème eikonal.On résout le problème eikonal de manière explicite pout tout k dans le cas d'un potentiel particulier. Ces calculs donnent une explication sur le fait que l'on ne puisse pas appliquer la méthode BKW pour des valeurs de |k| plus petites. On présente une nouvelle méthode numérique pour calculer la solution du problème eikonal avec des valeurs de |k| suffisamment grandes.Les calculs numériques de la transformée spectrale directe offrent une manière d'analyser le système de Dirac singulièrement perturbé pour des valeurs de |k| si petites qu'il n'y a pas de solution globale au problème eikonal. On donne une analyse semi-classique rigoureuse sur la solution pour des potentiels radiaux en k = 0, ce qui donne une expression asymptotique du coefficient de réflexion pour k = 0 et suggère une structure annulaire pour la solution, ce qui peut être utilisé quand |k| ≠ 0 est petit. L'étude numérique suggère aussi que pour certains potentiels, le coefficient de réflexion converge simplement, quand ε ↓ 0, vers une fonction limite définie pour des valeurs de k pour lesquelles le problème eikonal n'a pas de solution globale. On propose que les singularités de la fonction eikonale jouent un rôle aussi similaire que les points tournants de la théorie unidimensionelle. / Inverse scattering is the most powerful tool in theory of integrable systems. Starting in the late sixties resounding great progress was made in (1+1) dimensional problems with many break-through results as on soliton interactions. Naturally the attention in recent years turns towards higher dimensional problems as the Davey-Stewartson equations, an integrable generalisation of the (1+1)-dimensionalcubic nonlinear Schrödinger equation. The defocusing Davey-Stewartson II equation, in its semi-classical limit has been shown in numerical experiments to exhibit behavior that qualitatively resembles that of its one-dimensional reduction, namely the generation of a dispersive shock wave: smooth initial data develop a zone rapid modulated oscillations in the vicinity of shocks of solutions for the corresponding dispersionless equations for the same initial data. The present thesis provides a first step to study this problem analytically using the inverse scattering transform method. Both the direct and inverse scattering transform for DSII can be expressed as D-bar equations. We consider the direct spectral transform for the defocusing Davey-Stewartson II equation for smooth initial data in the semi-classical limit. The direct spectral transform involves a singularly perturbed elliptic Dirac system in two dimensions. We introduce a WKB-type method for this problem and prove that it is well defined for sufficiently large modulus of the spectral parameter k ∈ ℂ by controlling the solution of an associated nonlinear eikonal problem. Further, we give numerical evidence that the method is accurate for such k in the semiclassical limit. Producing this evidence requires both the numerical solution of the singularly perturbed Dirac system and the numerical solution of the eikonal problem. We present a new method for the numerical solution of the eikonal problem valid for sufficiently large |k|. For a particular potential we are able to solve the eikonal problem in a closed form for all k, acalculation that yields some insight into the failure of the WKB method for smaller values of |k|. The numerical calculations of the direct spectral transform indicate how to study the singularly perturbed Dirac system for values of |k| so small that there is no global solution of the eikonal problem. We provide a rigorous semiclassical analysis of the solution for real radial potentials at k=0, which yields an asymptotic formula for the reflection coefficient at k = 0 and suggests an annular structure for the solution that may be exploited when |k| ≠ 0 is small. The numerics also suggest that for some potentials the reflection coefficient converges point-wise as ε ↓ 0 to a limiting function that is supported in the domain of k-values on which the eikonal problem does not have a global solution. We suggest that singularities of the eikonal function play a role similar to that of turning points in the one-dimensional theory.
3

When Camp becomes a Method : a conceptualization of conversational performatives and curatorial agencies within ‘the camp-eye’

Apelgren, L. Petersdotter January 2020 (has links)
The aim of following thesis is to demonstrate the potentials of reassessing camp into a question of method. While others have argued for the definition of camp to lie in: an aesthetic; a question of taste; the extravagant theatrical; the male gay sensibility; or as an expression of parody, this thesis suggests that camp is to be found in the performative act of readings. With emphasis on ‘decoding language’, ‘the signifier/signified’ and ‘the camp eye’ I will argue for the relevance of ‘camp as method’ and situate former stated in relation to Bhabha’s concept of ‘conversational art’; a deconstructional examination of values of aesthetic experiences set into dialogue. Demonstrating for such conceptualization three theoretical approaches and themes will be outlined. First, a historical overview of camp followed by a reassessment of camp into a method. Second, an examination of possible extensions to the concept of rereading strategies within camp, including theories on queer phenomenology; queer space and time; topias and non-places; theories of curatorial methods and its agencies. And last, I will do an analysis of Moyra Davey’s video Hemlock Forest and show how Davey’s use and reference towards Chantal Akerman can be read as camp and constitutes ‘camp as method’ according to suggested reassessment.
4

Sur l'approximation modulationnelle du problème des ondes de surface : Consistance et existence de solutions pour les systèmes de Benney-Roskes / Davey-Stewartson à dispersion exacte / On the modulational approximation of the water waves problem : Consistency and well-posedness of the full dispersion Benney-Roskes and Davey-Stewartson systems

Obrecht, Caroline 29 June 2015 (has links)
Cette thèse s'inscrit dans l'étude des modèles asymptotiques aux équations des ondes de surface dans le régime modulationnel. Le problème des ondes de surface consiste à décrire le mouvement - sous l'influence de la gravitation et éventuellement de tension de surface - d'un fluide dans un domaine délimité par la surface libre du fluide et par un fond fixe. Dans l'étude de ce problème, on s'intéresse en particulier aux ondes se propageant à la surface du fluide.Dans le régime modulationnel, on considère l'évolution des ondes de surface sous forme de paquets d'ondes de faible amplitude se propageant dans une direction. Il est bien connu que la motion de l'enveloppe du paquet d'onde sur une échelle de temps d'ordre t = O(1/ϵ²), où ϵ est un petit paramètre désignant l'amplitude, est décrite approximativement par des systèmes d'équations appelés systèmes de Benney-Roskes (BR) / Davey-Stewartson (DS). Ces systèmes sont donnés par une équation de type Schrödinger cubique couplée à une équation d'ondes. L'approximation classique de BR / DS est bien établie et a été largement étudiée au cours des dernières décennies. Récemment, David Lannes a introduit une version à "dispersion exacte" de ces systèmes. Contrairement aux équations de BR / DS standard, les systèmes à dispersion exacte préservent la relation de dispersion des équations des ondes de surface. On devrait obtenir ainsi une description plus riche du vrai comportement dynamique des ondes de surface que dans le cas de l'approximation classique.Le systèmes de BR / DS à dispersion exacte sont étudiés dans cette thèse. La première partie est consacrée à la déduction formelle des systèmes de BR / DS en tant que modèles asymptotiques aux équations des ondes de surface. Nous donnons en outre un résultat sur la consistance de cette approximation.Ensuite, nous étudions le problème de Cauchy pour le système de BR à dispersion exacte. En fait, afin de justifier la consistance de l'approximation de BR avec les équations exactes, on doit prouver que ce système est bien posé (en espace de Sobolev) sur une échelle de temps d'ordre O(1/ϵ). Ceci est un problème ouvert même dans le cas classique, du moins pour le système de dimension 1 + 2. De même, nous ne pouvons pas démontrer l'existence de solutions en temps long pour le système de BR à dispersion exacte, mais nous obtenons un théorème d'existence locale (t = O(1)) à condition que la tension de surface soit assez forte. Si nous nous restreignons au système de dimension 1+1, nous pouvons enlever la contrainte sur la tension de surface. L'idée de la preuve d'existence locale, qui est inspirée par un travail de Schochet-Weinstein, est d'écrire le système de BR comme un système symétrique hyperbolique quasi-linéaire perturbé par un terme dispersif ne contribuant pas à l'énergie du système. Ainsi, nous pouvons appliquer les méthodes standard de résolution des systèmes hyperboliques.En modifiant le terme non-linéaire du système de BR de dimension 1+1 sans changer l'ordre de consistance, nous obtenons un système qui est bien posé sur l'échelle de temps appropriée O(1/ϵ). Cependant, cette démarche ne peut pas être généralisée au cas de dimension 1+2.Dans le dernier chapitre de cette thèse, nous donnons quelques résultats sur les systèmes de Davey-Stewartson à dispersion exacte. Pour les systèmes de DS, il est suffisant de démontrer qu'ils sont bien posés localement afin de justifier leur consistance avec les équations des ondes de surface. La théorie d'existence de solutions est assez complète pour le système de DS classique. Dans le cas de dispersion exacte cependant, les équations paraissent mal posées généralement, si bien que l'existence locale ne peut être démontrée pour l'instant que pour quelques cas particuliers simples. / This thesis is concerned with asymptotic models to the water wave equations in the modulational regime. The water wave equations describe the motion - under the influence of gravity and possibly surface tension - of an inviscid fluid in a domain which is bounded by a fixed bottom from below and the free surface of the fluid from above. In the study of the water wave problem, one is in particular interested by waves propagating on the surface of the fluid.In the modulational regime, one considers the evolution of surface waves under the form of small amplitude wave packets traveling in one direction. It is well known that the evolution of the wave packet envelope on the long time scale t = O(1/ϵ²), where ϵ is a small parameter denoting the amplitude of the wave, is approximately governed by a set of equations known as the Benney-Roskes (BR) / Davey-Stewartson (DS) systems. These systems are essentially given by a cubic Schrödinger-type equation coupled to a wave equation. The classical BR / DS approximation is well established and has been largely studied in the past decades. Recently, David Lannes has introduced a "full dispersion" version of these systems. In contrast to the standard BR / DS equations, the full dispersion systems preserve the linear dispersion relation of the full water wave equations, and should therefore give a richer description of the original wave dynamics than the classical approximation.The full dispersion BR / DS systems are studied in this thesis. In the first part, we formally derive the full dispersion BR / DS approximation from the water wave equations both in the case of zero and positive surface tension. The formal derivation is completed by a consistency result.We then study well-posedness in Sobolev space of the full dispersion BR system. In order to justify consistency of the BR approximation with the full water wave equations, one needs to show that the BR system is well posed on a time scale of order O(1/ϵ). This is an open problem even in the classical case, at least for the 1 + 2 dimensional system. We also do not obtain well-posedness on the long time scale for the full dispersion BR system, but we can show that it is locally well-posed in the case of sufficiently strong surface tension, and additionally in the zero surface tension case if we restrict ourselves to the 1+1 dimensional system. The proof is inspired by a paper of Schochet-Weinstein, and is based on writing the full dispersion BR system as a quasilinear symmetric hyperbolic system with dispersive perturbation, where the dispersive terms do not contribute to the energy. We can therefore apply classical solution methods for hyperbolic systems.By modifying the nonlinear part of the 1+1 dimensional full dispersion BR system without changing consistency, we obtain a system that is well-posed on the appropriate O(1/ϵ) time scale. This approach however does not generalize to the 1+2 dimensional case.In the last chapter of the thesis, we give some results on the full dispersion DS systems, which are obtained as special limits of the full dispersion BR system. For these systems, it is sufficient to prove local well-posedness in order to show consistency with the water wave equations. For the standard DS systems, local well-posedness theory is quite complete. For the full dispersion systems, the analysis is complicated by some nonlocal operators and the equations seem to be generally ill-posed. There are however some simple cases where local well-posedness can be shown. We also discuss some modifications of the full dispersion DS system that might allow to solve it for a larger range of parameters.
5

Etude numérique d'équations aux dérivées partielles non linéaires et dispersives.

Roidot, Kristelle 25 October 2011 (has links) (PDF)
L'analyse numérique se développe en un outil puissant dans l'étude des équations aux dérivées partielles (EDPs), permettant d'illustrer des théorèmes existants et de trouver des conjectures. En utilisant des techniques sophistiquées, des questions apparaissant inaccessibles avant, comme des oscillations rapides ou un blow-up des solutions, peuvent être étudiées. Des oscillations rapides dans les solutions sont observées dans des EDPs dispersives sans dissipation ou les solutions des EDPs correspondantes sans dispersion ont des chocs. Pour résoudre numériquement ces oscillations, l'application de méthodes efficaces introduisant peu de dissipation numérique artificielle est impérative, en particulier pour l'étude d' EDPs en plusieurs dimensions. Comme les EDPs étudiées dans ce contexte sont typiquement raides, l'intégration efficace dans le temps représente le principal problème. Une analyse des intégrants exponentiels et symplectiques a permis de déterminer les méthodes les plus efficaces pour chaque EDP étudiée. L'apprentissage et l'utilisation de techniques de parallélisation de codes numériques permet de nos jours de grandes avancées, plus précisément dans ce travail d'étudier numériquement la stabilité des solutions et l'apparition de blow-up dans l'équation de Davey-Stewartson.

Page generated in 0.038 seconds