• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 856
  • 161
  • 72
  • 59
  • 41
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1342
  • 1118
  • 134
  • 133
  • 116
  • 111
  • 111
  • 104
  • 102
  • 102
  • 101
  • 94
  • 84
  • 81
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Nanofiber reinforced epoxy composite

Hsieh, Feng-Hsu January 2006 (has links)
Thesis (M.S.)--Ohio University, June, 2006. / Title from PDF t.p. Includes bibliographical references (p. 63-71)
312

Electrospun conducting nanofiber-based materials and their characterizations effects of fiber characteristics on properties and applications /

Aussawasathien, Darunee. January 2006 (has links)
Dissertation (Ph. D.)--University of Akron, Dept. of Polymer Engineering, 2006. / "May, 2006." Title from electronic dissertation title page (viewed 10/11/2006) Advisor, Erol Sancaktar; Committee members, James L. White, Kyonsuku Min, Darrell H. Reneker, Wieslaw Binienda; Department Chair, Sadhan C. Jana; Dean of the College, Frank N. Kelley; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
313

Sorption of Arsenic, Mercury, Selenium onto Nanostructured Adsorbent Media and Stabilization via Surface Reactions

Han, Dong Suk 2009 December 1900 (has links)
The overall goal of this study is to evaluate the ability of novel nanostructured adsorbent media (NTAs, iron sulfides (FeS2 and FeS)) to remove arsenic, selenium and mercury from ash and scrubber pond effluents. The NTAs aim to enhance arsenic removal from solution compared to conventional adsorbents. The iron sulfides are expected to produce stable residuals for ultimate disposal after removing As, Se and Hg from solution, so that removal of these compounds from wastewaters will not result in contamination of soils and groundwaters. Methods for reliably and economically producing these materials were developed. The synthesized NTAs and iron sulfides were characterized by surface analysis techniques such as XRD, FT-IR, SEM-EDS, TEM, XPS, AFM and N2-adsorption. These analyses indicated that Ti(25)-SBA-15 has highly ordered hexagonal mesopores, MT has interparticle mesopores, pyrite (FeS2) forms crystalline, nonporous rectangular nanoparticles (<500 nm), and mackinawite (FeS) forms amorphous, nonporous nanoparticles (<100 nm). Kinetic and equilibrium tests for As(III, V) removal were conducted with NTAs over a range of pH (4, 7, 9.5). The rates of arsenic uptake were very fast and followed a bi-phasic sorption pattern, where sorption was fast for the first 10 minutes, and then slowed and was almost completed within 200 minutes. Distinct sorption maxima for As(III) removal were observed between pH 7 and pH 9.5 for MT and between pH 4 and pH 7 for Ti(25)-SBA-15. The amount of As(V) adsorbed generally decreased as pH increased. In addition, a surface complexation model (SCM) based on the diffuse layer model (DLM) was used to predict arsenic adsorption envelopes by NTAs under various environmental conditions. The SCM for As(III, V) adsorption by NTAs demonstrated the role of mono- and bidentate surface complexes in arsenic adsorption. A batch reactor system was employed in an anaerobic chamber to conduct experiments to characterize both the removal of As, Se, Hg from solution and their subsequent reactions with iron sulfides. Experiment variables for removal experiments included: contaminant valence state (As(V), As(III), Se(VI), Se(IV), Hg(II)); adsorbent/reactant type (FeS, FeS2); adsorbent/reactant concentration; pH (7, 8, 9, 10); and competing ion (SO42-) concentration (0, 1, 10 mM). Experimental variables for reaction experiments were reaction time (up to 30 days) at pH 8 and oxidation states of contaminants. In addition, the stability of iron sulfides (FeS2, FeS) combined with target compounds was investigated by measuring the ability of the target compounds to resist release to the aqueous phase after removal. These experiments showed that iron sulfides were good adsorbent/reactants for target contaminants in spite of the presence of sulfate. This was particularly true at intermediate concentrations of target compounds. The experiments also demonstrated that iron sulfides interacted with target contaminants in such a way to improve their resistance to being released back to solution as pH was changed. Therefore, this study demonstrates the ability of novel nanostructured adsorbent media to remove arsenic, selenium and mercury from ash and scrubber pond effluents and the ability of iron sulfides to produce residuals that are stable when disposed in landfills.
314

ZnO nanocones and nanoplatelets: synthesis and characterization

Chang, Yanling 12 August 2010 (has links)
Nanowire structure plays an important role in the development of nanotechnology. However, further study shows that the shape of nanowires may not be the ideal morphology for some applications such as solar cells and sensors. Thus, the purpose of this thesis is to find a low cost and high yield approach to the synthesis of other morphologies of nanostructures in order to further improve the performance of these nanodevices. To this end, a chemical approach has been extended to the synthesis ZnO nanocones and platelets. With UV illumination, the synthesis of ZnO nanocones was achieved on GaN films on sapphire and gold films on silicon substrates. Both TEM and XRD results show that as-grown ZnO nanocones are single crystals. The formation of ZnO nanocones could be explained by the absorption process of photons. The UV light induced thermal gradient modifies the heat distribution as well as the reagent transport. The chemical reaction system is kinetically limited and results in ZnO nanocones. If the UV light is blocked, the ZnO nanowires result. In addition, the density of ZnO nanocones is higher than ZnO nanowires grown without UV illumination. By this chemical approach, ZnO platelets could also be obtained on GaN films deposited by PLD, whose c-axis is parallel to the surface of the substrate. The diameters and the thickness of the platelets depend on the quality and thickness of GaN film. TEM results illustrate that the obtained ZnO platelets are single crystals grown along the <0 1 1 0> direction within the {0 0 0 1} planes. Relative growth rates of various facets were altered by the presence of [1 0 0] textured GaN film. The suppression of the growth along c axis can also be achieved by citrate anions as a structure-directing agent to adsorb selectively on ZnO basal planes. Electrical measurement shows that the resistance of ZnO platelets is about 20-40 GΩ¸ and it is higher than that of ZnO nanowires. Piezoelectric potential calculation results also indicate that the piezoelectric potential is higher than for ZnO nanowires with the same external applied stress. These procedures and results demonstrate an easy and low cost way to fabricate ZnO nanocones and platelets, which may aid the utilization of nanostructures in solar cells, sensors and other applications to further improve their performance.
315

Properties of tip-sample nanoscale structure and characterization of silicon using scanning tunneling microscopy-spectroscopy /

Lin, Hai-An. January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 127-134).
316

An investigation of the deformation of anodic aluminium oxide nano-honeycomb during nanoindentation /

Ng, King-yeung. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 138-139). Also available online.
317

Fabrication of thin film nanoscale alumina templates

Sines, Paul B. January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains vii, 44 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 35-37).
318

Adsorbate-induced nanoscale faceting of rhenium surfaces

Wang, Hao, January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Physics and Astronomy." Includes bibliographical references (p. 130-135).
319

Atomic force microscopy as a tool to investigate and use nanoscopic polymer interactions /

Malotky, David L., January 2001 (has links)
Thesis (Ph. D.)--Lehigh University, 2001. / Includes bibliographical references and vita.
320

Exploiting polymer single crystals to assemble and functionalize nanomaterials /

Li, Bing. Li, Christopher Yuren. January 2009 (has links)
Thesis (Ph.D.)--Drexel University, 2009. / Includes abstract and vita. Includes bibliographical references (leaves 222-238).

Page generated in 0.24 seconds