• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPECTROSCOPY AND FORMATION OF LANTHANUM-HYDROCARBON COMPLEXES

Cao, Wenjin 01 January 2018 (has links)
Lanthanum-mediated bond activation reactions of small hydrocarbon molecules, including alkenes, alkynes, and alkadienes, were carried out in a laser vaporization metal cluster beam source. Time-of-flight mass spectrometry and mass-analyzed threshold ionization (MATI) spectroscopy, in combination with quantum chemical and multi-dimensional Franck-Condon factor calculations, were utilized to identify the reaction products and investigate their geometries, electronic structures, and formation mechanisms. La-hydrocarbon association was only observed in the reaction of La with isoprene. C-H bond activation was observed in all reactions, hydrogen elimination was observed as the prominent reaction for the alkenes (2-butene, isobutene, 1-pentene, and 2-pentene), alkynes (1-butyne, 2-butyne, and 1-pentyne), and 1,4-pentadiene, and C-C bond activation was observed for the five-membered hydrocarbons (1-pentene, 2-pentene, 1-pentyne, isoprene, and 1,4-pentadiene). The La-hydrocarbon radicals formed in these reactions had lanthanacyclic structures in various sizes, and each of the La-hydrocarbon complexes had a doublet ground state with a 6s1 La-based electron configuration. Ionization removed the 6s electron, and the resultant ion was in a singlet state. Formations of dehydrogenated products were either through a concerted hydrogen elimination process or the dehydrogenation after ligand isomerization. The C-C bond activation proceeded through La-assisted hydrogen migration, followed by C-C bond cleavage, or vice versa.

Page generated in 0.0428 seconds