• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopic study of transition metal compounds.

Choudhury, Sanjukta 30 August 2010
The electronic structure of some transition metal compounds, specifically, Ca-doped LaMnO3, fundamental Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2), and Fe-doped ZnO is studied using a combination of soft X-ray spectroscopy and atomic multiplet calculations. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are used as experimental tools to probe the unoccupied and occupied partial density of electronic states,respectively.<p> Ca-doped LaMnO3 perovskites have attracted great attention due to their colossal magnetoresistance and a wide range of magnetic and structural transitions. The magnetic and charge transport properties of these perovskites are directly related with Mn 3d-occupancy or Mn-valency and therefore, an investigation of the Mn-valence at Ca-doped LaMnO3 system is important. In this system, the Mn-valency is generally considered as a mixture of Mn3+ and Mn4+. But my research suggests the presence of Mn2+ at the surface of Ca-doped LaMnO3 samples. It is observed that increasing Ca-doping decreases Mn2+ concentration, and conversely, increases Mn3+ concentration. High temperature annealing at 1000 °C in air leads to the full reduction of surface Mn2+. Mechanisms for these observations are proposed in this study.<p> Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2) are often used as reference standards for determining the Mn-valency in Mn-related complex systems and therefore a detailed understanding of their electronic structure is necessary. The Mn L2,3 XAS and O K XAS are measured for the four Mn oxides consisting of three common Mn oxidation states (Mn2+ in MnO, Mn3+ in Mn2O3, mixture of Mn2+ and Mn3+ in Mn3O4, and Mn4+ in MnO2). A significant energy shift with a systematic trend is observed in measured Mn L2,3 and O K absorption edges. These energy shifts are identified as a characteristic shift for different Mn oxidation states. Mn L2,3 Resonant Inelastic X-ray Scattering (RIXS) spectroscopy is demonstrated as a powerful tool in describing low energy excitations, e.g. d-d excitations and charge-transfer excited states in Mn oxides. For the first time, a RIXS study of Mn2O3,Mn3O4, and MnO2 is accomplished. Atomic multiplet calculations are used to successfully reproduce the energy positions and intensity variations of d-d excitation peaks observed in the experiment, and thus to describe the experimental RIXS spectra.<p> Finally, the local electronic structure of Fe implanted ZnO samples, a useful diluted magnetic semiconductor for spintronics, is investigated to shed light on the existing debate about the origin of ferromagnetism in these materials. Fe L2,3 XAS reveals that doped Fe ions are present in both Fe2+ and Fe3+ valence states. A combined theoretical and experimental study shows that doped ions are incorporated into Zn-sites of ZnO in tetrahedral symmetry. Fe L3- RIXS measurements demonstrate that a high Fe-ion dose of 8 × 107 cm-2 causes formation of FeO clusters, while low dose samples exhibit more free carriers.
2

Spectroscopic study of transition metal compounds.

Choudhury, Sanjukta 30 August 2010 (has links)
The electronic structure of some transition metal compounds, specifically, Ca-doped LaMnO3, fundamental Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2), and Fe-doped ZnO is studied using a combination of soft X-ray spectroscopy and atomic multiplet calculations. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are used as experimental tools to probe the unoccupied and occupied partial density of electronic states,respectively.<p> Ca-doped LaMnO3 perovskites have attracted great attention due to their colossal magnetoresistance and a wide range of magnetic and structural transitions. The magnetic and charge transport properties of these perovskites are directly related with Mn 3d-occupancy or Mn-valency and therefore, an investigation of the Mn-valence at Ca-doped LaMnO3 system is important. In this system, the Mn-valency is generally considered as a mixture of Mn3+ and Mn4+. But my research suggests the presence of Mn2+ at the surface of Ca-doped LaMnO3 samples. It is observed that increasing Ca-doping decreases Mn2+ concentration, and conversely, increases Mn3+ concentration. High temperature annealing at 1000 °C in air leads to the full reduction of surface Mn2+. Mechanisms for these observations are proposed in this study.<p> Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2) are often used as reference standards for determining the Mn-valency in Mn-related complex systems and therefore a detailed understanding of their electronic structure is necessary. The Mn L2,3 XAS and O K XAS are measured for the four Mn oxides consisting of three common Mn oxidation states (Mn2+ in MnO, Mn3+ in Mn2O3, mixture of Mn2+ and Mn3+ in Mn3O4, and Mn4+ in MnO2). A significant energy shift with a systematic trend is observed in measured Mn L2,3 and O K absorption edges. These energy shifts are identified as a characteristic shift for different Mn oxidation states. Mn L2,3 Resonant Inelastic X-ray Scattering (RIXS) spectroscopy is demonstrated as a powerful tool in describing low energy excitations, e.g. d-d excitations and charge-transfer excited states in Mn oxides. For the first time, a RIXS study of Mn2O3,Mn3O4, and MnO2 is accomplished. Atomic multiplet calculations are used to successfully reproduce the energy positions and intensity variations of d-d excitation peaks observed in the experiment, and thus to describe the experimental RIXS spectra.<p> Finally, the local electronic structure of Fe implanted ZnO samples, a useful diluted magnetic semiconductor for spintronics, is investigated to shed light on the existing debate about the origin of ferromagnetism in these materials. Fe L2,3 XAS reveals that doped Fe ions are present in both Fe2+ and Fe3+ valence states. A combined theoretical and experimental study shows that doped ions are incorporated into Zn-sites of ZnO in tetrahedral symmetry. Fe L3- RIXS measurements demonstrate that a high Fe-ion dose of 8 × 107 cm-2 causes formation of FeO clusters, while low dose samples exhibit more free carriers.
3

The interface effect on Magnetoresistance and Magnetization of La0.7Ce0.3MnO3 and La0.7Ca0.3MnO3 thin films

Hung, Chen-Yung 04 July 2004 (has links)
Hole-doped manganite La0.7Ca0.3MnO3 (LCMO) was extensively studied because of its colossal magnetoresistance (CMR) characteristic in a magnetic field. Recently, a new member of CMR family La0.7Ce0.3MnO3 (LCeMO), an electron-doped manganite, raises a new wave of attention for possible application in p-n junction. In this present study, LCMO and LCeMO single layer and bi-layer were grown on SrTiO3 (100) substrate by a pulse laser ablation technique. Due to the neutralization at the p-n junction a possible insulating layer with the anti-ferromagnetic (AFM) property is expected. There is no systematically study of this matter up to date, thus, it is worth to systematically investigate the physical properties of this junction. The result indicates the possible neutralization layer exhibits huge resistance comparison with two lateral layers, the bias current is constrained on the limited thickness of the top layer, which implies the neutralization layer forms a depletion layer that block the current to flow through to the bottom layer. Its electric and magnetic properties may similar to the parent compound LaMnO3 with insulating and anti-ferromagnetic characteristics. Separated by this possible layer, the magnetic coupling between lateral layers is weak. However, the possible AFM layer does pin the magnetic moment of the top layer along the direction perpendicular to the substrate that make a distinct magnetoresistance at low magnetic field.

Page generated in 0.02 seconds