Spelling suggestions: "subject:"labeling chemistry"" "subject:"cabeling chemistry""
1 |
Development of Affibody molecules for radionuclide molecular imaging and therapy of cancerHonarvar, Hadis January 2016 (has links)
Affibody molecules are a promising class of scaffold-based targeting proteins for radionuclide-based imaging and therapy of cancer. This thesis work is based on 5 original research articles (papers I-V), which focus on optimization of molecular design of HER2-binding Affibody variants for high contrast imaging of this predictive biomarker as well as development of Affibody molecules suitable for radionuclide-based targeted therapies. Papers I and II were dedicated to evaluation of the influence of the macrocyclic chelator DOTA positioning at N-terminus, in the middle of helix-3 and at C terminus of a synthetic Affibody molecule, ZHER2:S1. These synthetic variants were labelled with different radionuclides i.e. 111In and 68Ga to study also the effect of different labels on their biodistribution properties. In paper III a 2-helix variant, Z342min, was developed using native ligation cyclization to cross-link helices one and two resulting in a stable 2-helix scaffold and characterized in vivo. This study was performed with the aim to obtain structure-properties relationship for development of smaller Affibody molecules. Papers IV and V were devoted to development of therapeutic strategies. In paper IV, a series of peptide based chelators was investigated for labelling of Affibody molecules with 188Re to provide low renal retention. In paper V, a pretargeting approach using peptide nucleic acid was investigated. These studies were performed with the aim to overcome the high renal retention of Affibody molecules when labelled with residualizing therapeutic radionuclides. Otherwise, the particle emitting radiometals could damage the kidneys more than the tumours. The results obtained for anti-HER2 Affibody molecules summarized in this thesis might be of importance for the development of other scaffold protein based targeting agents.
|
2 |
Tumour Targeting using Radiolabelled Affibody Molecules : Influence of Labelling ChemistryAltai, Mohamed January 2014 (has links)
Affibody molecules are promising candidates for targeted radionuclide-based imaging and therapy applications. Optimisation of targeting properties would permit the in vivo visualization of cancer-specific surface receptors with high contrast. In therapy, this may increase the ratio of radioactivity uptake between tumour and normal tissues. This thesis work is based on 5 original research articles (papers I-V) and focuses on optimisation of targeting properties of anti-HER2 affibody molecules by optimising the labelling chemistry. Paper I and II report the comparative evaluation of the anti-HER2 ZHER2:2395 affibody molecule site specifically labelled with 111In (suitable for SPECT imaging) and 68Ga (suitable for PET imaging) using the thiol reactive derivatives of DOTA and NODAGA as chelators. The incorporation of different macrocyclic chelators and labelling with different radionuclides modified the biodistribution properties of affibody molecules. This indicates that the labelling strategy may have a profound effect on the targeting properties of radiotracers and must be carefully optimized. Paper III reports the study of the mechanism of renal reabsorption of anti-HER2 ZHER2:2395 affibody molecule. An unknown receptor (not HER2) is suspected to be responsible for the high reabsorption of ZHER2:2395 molecules in the kidneys. Paper IV reports the optimization and development of in vivo targeting properties of 188Re-labelled anti-HER2 affibody molecules. By using an array of peptide based chelators, it was found that substitution of one amino acid by another or changing its position can have a dramatic effect on the biodistribution properties of 188Re-labelled affibody molecules. This permitted the selection of –GGGC chelator whichdemonstrated the lowest retention of radioactivity in kidneys compared to other variants and showed excellent tumour targeting properties. Paper V reports the preclinical evaluation of 188Re-ZHER2:V2 as a potential candidate for targeted radionuclide therapy of HER2-expressing tumours. In vivo experiments in mice along with dosimetry assessment in both murine and human models revealed that future human radiotherapy studies using 188Re-ZHER2:V2 may be feasible. It would be reasonable to believe that the results of optimisation of anti-HER2 affibody molecules summarized in this thesis can be of importance for the development of other scaffold protein-based targeting agents.
|
3 |
Effects of antibody labeling chemistry on assays developed for the Gyrolab immunoassay platformDencker, Julia January 2021 (has links)
The aim of this project was to make a comparison of the effects of antibody labeling chemistries on assays developed for the Gyrolab immunoassay platform. One of the labeling techniques was a heterogenous labeling technique targeting amino groups on the antibody. The other labeling technique was a site-specific labeling technique targeting the conserved Fc-glycan at the aspargine 297 residue on the IgG molecule. The site-specific labeling was performed using a kit from Genovis called GlyCLICK. The two labeling techniques were compared on four different assays developed for the Gyrolab platform. The assays tested in this project were two anti-drug antibody assays, a pharmacokinetics assay, a polyclonal antibody assay, and a monoclonal antibody assay. The drug tolerance was tested for the anti-drug antibody assays, resulting in better drug tolerance for reagents labeled with amino conjugation for the Humira assay with incubation overnight. A confirmatory analysis, testing the inhibition of negative control with addition of unlabeled drug in the Master Mix, was performed. This resulted in small differences in the inhibition between the different reagents, except for Keytruda on Gyrolab Bioaffy 200, for which the GlyCLICK labeled reagents led to a lower inhibition of the negative control. For all the assays the effects on signal to background ratio and limit of detection was investigated. The greatest advantages of GlyCLICK on the signal to background was observed for anti-drug antibody Keytruda assay and polyclonal antibody assay. For the polyclonal antibody assay, the results indicated potentially reduced need for the polishing step and for two wash solutions after addition of the detect reagent.
|
Page generated in 0.09 seconds