• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Size-Scale Effects of Nonlinear Weir Hydraulics

Young, Nathan L. 01 May 2018 (has links)
Experimental physical model studies of hydraulic structures are often conducted to replicate flow behavior that may occur at the prototype scale. Geometric similitude is most often maintained between the prototype and model when studying reservoir and open channel hydraulic structures to account for the dominant gravity and inertia forces while other fluid forces (e.g., viscosity,surface tension) are assumed negligible. However, as model size and/or upstream head decreases, other fluid forces can exceed the negligible level and influence model flow behavior. This phenomenon is referred to as size-scale effects and is one potential origin of error in predicting the prototype behavior through testing geometrically similar models. To extend the existing research of size-scale effects on nonlinear weirs half-and quarter-round trapezoidal labyrinth weirs and piano key weirs were fabricated at length ratios of 1, 2, 3, 6, and 12. The largest weir model for each weir type (i.e., a weir height of 36 in for labyrinth weir models and a weir height of 33 in for piano key weir models) served as the corresponding prototype.Weir models were hydraulically tested to assess differences among head-discharge relationships and flow behavior. Limiting criteria were recommended to avoid size-scale effects depending on the weir type and model size. The results of this study will help hydraulic modelers determine what limiting criteria should be met to avoid size-scale effects.
2

Flow Characteristics of Arced Labyrinth Weirs

Christensen, Nathan A. 01 December 2012 (has links)
The need to accommodate larger reservoir discharge events has prompted the improvement or replacement of existing spillways. One possible spillway modification is the use of an in-reservoir arced labyrinth weir in place of a linear weir. Arced labyrinth weirs can increase crest length (more cycles) and have improved hydraulic efficiency in non-channelized approach flow applications, compared to traditional labyrinth weir applications. In this study, arced labyrinth weir flow characteristics were observed for eleven different laboratory-scale model geometries at the Utah Water Research Laboratory. Rating (Cd vs. HT/P) data and observations were recorded for each configuration, and discharge efficiency was determined. Cycle efficiency, which is representative of the discharge per cycle, was also reported.
3

Piano Key Weir Head Discharge Relationships

Anderson, Ricky M. 01 May 2011 (has links)
A piano key (PK) weir is a type of nonlinear (labyrinth-type) weir developed specifically for free-surface flow control structures with relatively small spillway footprints. Currently, no generally accepted standard PK weir design procedure is available. This is due, in part, to the large number of geometric parameters and a limited understanding of their effects on discharge efficiency (discharge efficiency is quantified by the discharge coefficient of the standard weir equation). However, Hydrocoop, a non-profit French dam spillways association, has recommended a PK weir design and a head-discharge relationship specific to that geometry. To develop a better understanding of the effects of PK weir geometry on discharge efficiency, 13 laboratory-scale, 4-cycle PK and rectangular labyrinth weir configurations were tested. As a result, the influence of the following PK weir geometries and/or modifications on discharge efficiency were partially isolated: the inlet-to-outlet key width ratio, upstream, and downstream apex overhangs; sloped floors; raising the crest elevation via a parapet wall; fillets underneath the upstream overhangs; and the crest type. The physical model test matrix also included a PK weir configuration consistent with the Hydrocoop-recommended design. From the experimental results, the appropriateness of the Hydrocoop-recommended head-discharge relationship was evaluated, along with the discharge coefficient behavior associated with the standard weir equation. Finally, trapezoidal labyrinth weirs were compared to PK weirs to make a relative comparison of nonlinear weir discharge efficiency; comparisons were made considering crest length and structure footprint.
4

Labyrinth weir hydraulics : validation of CFD modelling

Robertson, Guy Kinloch 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The use of computational fluid dynamics (CFD) as a design tool is becoming increasingly popular in the water resources field. This thesis aims to extend the knowledge of CFD and determine the usefulness of current CFD programs as a modelling tool. This thesis also seeks to determine the accuracy of CFD modelling when compared to physical modelling, the more established form of model testing. It is important that research is conducted on the validation of CFD because with an increase in computer power, processing speed and continual development in the programs used to generate the models, CFD could become an essential tool for the hydraulic engineer. A current key difficulty faced by CFD programs is the mapping of the free surface level of a body of fluid in a two-phase (water and air) flow condition. This is further complicated by the existence of three-dimensional flow over a labyrinth weir and a fluctuating nappe, which at times requires a free surface level to be mapped both above and below the nappe. This thesis begins by detailing the design methods and actual design of a typical labyrinth weir. It then describes the construction of a 1:20 scale physical model, testing procedures, goals, and the results of the physical model tests. Following the physical model study, the thesis discusses the development of a three-dimensional CFD model, designed in a way that matched the physical model. Simulation results obtained from the CFD model are then compared to those from the physical model study and the accuracy and suitability of CFD modelling as a design tool are evaluated. This evaluation considers the surcharge upstream of the weir and transient pressures on the weir. The thesis concludes with recommendations for further research in this field. The results achieved show that the CFD model was able to accurately map the movement of particles within the domain, to fully develop a flow profile, and to accurately predict the water surface level. The pressure readings obtained during CFD modelling were in the same order as those obtained during physical modelling. However, the CFD modelling pressure readings did not often accurately correspond with the physical modelling data, with the average error being 92%. These results indicate that there is still further development required in CFD before it can be relied upon as a design tool independent of other experimental methods. The difficulty and the length of time taken to generate the results also indicate that, at this stage and in this particular scenario, the engineer would be better served through the use of a physical model. / AFRIKAANSE OPSOMMING: Die gebruik van gerekenariseerde vloeidinamika (CFD) as ’n ontwerpinstrument het toenemend gewild begin raak op die gebied van waterhulpbronne. Die doel van hierdie verslag is om kennis van CFD uit te brei en die nut van huidige CFD-programme as ’n modelleringsinstrument te bepaal. Daar word voorts ook gepoog om die akkuraatheid van CFD-modellering te bepaal in vergelyking met fisiese modellering – die meer gevestigde vorm van modeltoetsing. Dit is noodsaaklik dat navorsing gedoen word oor die bekragtiging van CFD, want met ’n toename in rekenaarkrag, verwerkingsnelheid en deurlopende ontwikkeling in die programme wat gebruik word om die modelle te genereer, sal CFD ’n noodsaaklike instrument vir die hidroulika-ingenieur word. ’n Belangrike probleem wat CFD-programme tans inhou, is die kartering van die vry oppervlak van ’n liggaam vloeistof in ’n tweefasse vloeitoestand (water en lug). Dit word verder bemoeilik deur die bestaan van driedimensionele vloei oor ’n labirint-stuwal en ’n skommelende “nappe”, wat by tye vereis dat ’n vry oppervlak sowel bo as onder die “nappe” gekarteer met word. Die verslag begin met ’n uiteensetting van die ontwerpmetodes en fisiese ontwerp van ’n tipiese labirintstuwal. Die bou van ’n 1:20-skaal- fisiese model, toetsprosedures, doelwitte en die resultate van die toetse op die fisiese model word dan beskryf. Ná die studie van die fisiese model, word die ontwikkeling van ’n driedimensionele CFD-model bespreek, wat ontwerp is om by die fisiese model te pas. Die simulasie-resultate van die CFD-model word dan vergelyk met dié van die studie van die fisiese model en die akkuraatheid en geskiktheid van CFD-modellering as ’n ontwerpinstrument word geëvalueer. In hierdie evaluering word die opdamming stroomop van die stuwal en druk op die stuwal ondersoek. Die verslag word afgesluit met aanbevelings vir verdere navorsing op hierdie gebied. Die resultate toon dat die CFD-model die beweging van partikels in die domein akkuraat kon karteer ten einde ’n volledige vloeiprofiel te ontwikkel en die watervlak akkuraat te voorspel. Die drukke wat tydens CFD-modellering verkry is, stem egter nie ooreen met die lesings wat tydens fisiese modellering verkry is nie. Die gemiddelde fout is 92%. Hierdie resultate toon dat verdere ontwikkeling in CFD nodig is voordat daarop staat gemaak kan word as ’n ontwerpinstrument wat onafhanklik van ander eksperimentele metodes gebruik kan word. Die moeilikheidsgraad en die lang tydsduur betrokke by die generering van resultate is ook ’n aanduiding dat die gebruik van ’n fisiese model die ingenieur op hierdie stadium en in hierdie spesifieke scenario beter tot diens sal wees.

Page generated in 0.0394 seconds