• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element method

Fernandes, Jeferson Wilian Dossa 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
2

Simulação numérica de escoamentos bidimensionais com superfícies livres e linhas de contato dinâmicas / An arbitrary lagrangian-eulerian method for surface-tension dominated flows with contact lines

Silva, Alysson Alexander Naves 26 April 2010 (has links)
Um método lagrangeano-euleriano arbitrário para a resolução de escoamentos dominados por tensão superficial é apresentado neste trabalho. Tais escoamentos são importantes em muitas aplicações, especialmente em canais capilares que frequentemente aparecem em escoamentos em microescala. A resolução deste tipo de escoamento apresenta vários desafios que são abordados neste trabalho. O escoamento é resolvido somente para a fase líquida, com condições de contorno apropriadas para a superfície livre que delimita o líquido e o gás, que é representada por arestas e vértices da malha computacional. Esta se move e se deforma, sendo que sua qualidade é mantida sob controle para não degradar a solução numérica. As equações de Navier-Stokes são discretizadas pelo método de elementos finitos em um referencial arbitrário. O método de incorporação dos efeitos de tensão superficial e linha de contato é explicado em detalhes. Validações comprovam a precisão do método proposto, com comparações através de soluções pseudo-analíticas para casos simples. Finalmente alguns resultados sobre escoamentos em capilares são apresentados / An arbitrary lagrangian-eulerian finite element method to solve surface tension dominated flows is presented. Such flows are important in many applications, particularly in capillary channels, that appear in microscale flows. The resolution of such flows presents several challenges that are addressed in this work. The flow is solved only in the liquid phase, and proper boundary conditions are applied on the free-surface, bounding the liquid and gas, which is explicitly represented by vertices and edges of the computational mesh. The mesh is moved and deformed, but its quality is kept under control in order to control errors in the numerical solution. The Navier-Stokes equations are discretized by standard Galerkin finite element method in an arbitrary reference. Details of the computation of surface tension and contact line effects are presented. The methodology is validated for a number of simple test cases against known pseudo-analytical solutions, and numerical results are presented, showing the robustness and accuracy of the methodology. Finally, some results about surface-tension-driven flows in capillaries are presented
3

Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element method

Sanches, Rodolfo André Kuche 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
4

Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element method

Rodolfo André Kuche Sanches 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
5

Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element method

Jeferson Wilian Dossa Fernandes 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
6

Simulação numérica de escoamentos bidimensionais com superfícies livres e linhas de contato dinâmicas / An arbitrary lagrangian-eulerian method for surface-tension dominated flows with contact lines

Alysson Alexander Naves Silva 26 April 2010 (has links)
Um método lagrangeano-euleriano arbitrário para a resolução de escoamentos dominados por tensão superficial é apresentado neste trabalho. Tais escoamentos são importantes em muitas aplicações, especialmente em canais capilares que frequentemente aparecem em escoamentos em microescala. A resolução deste tipo de escoamento apresenta vários desafios que são abordados neste trabalho. O escoamento é resolvido somente para a fase líquida, com condições de contorno apropriadas para a superfície livre que delimita o líquido e o gás, que é representada por arestas e vértices da malha computacional. Esta se move e se deforma, sendo que sua qualidade é mantida sob controle para não degradar a solução numérica. As equações de Navier-Stokes são discretizadas pelo método de elementos finitos em um referencial arbitrário. O método de incorporação dos efeitos de tensão superficial e linha de contato é explicado em detalhes. Validações comprovam a precisão do método proposto, com comparações através de soluções pseudo-analíticas para casos simples. Finalmente alguns resultados sobre escoamentos em capilares são apresentados / An arbitrary lagrangian-eulerian finite element method to solve surface tension dominated flows is presented. Such flows are important in many applications, particularly in capillary channels, that appear in microscale flows. The resolution of such flows presents several challenges that are addressed in this work. The flow is solved only in the liquid phase, and proper boundary conditions are applied on the free-surface, bounding the liquid and gas, which is explicitly represented by vertices and edges of the computational mesh. The mesh is moved and deformed, but its quality is kept under control in order to control errors in the numerical solution. The Navier-Stokes equations are discretized by standard Galerkin finite element method in an arbitrary reference. Details of the computation of surface tension and contact line effects are presented. The methodology is validated for a number of simple test cases against known pseudo-analytical solutions, and numerical results are presented, showing the robustness and accuracy of the methodology. Finally, some results about surface-tension-driven flows in capillaries are presented

Page generated in 0.0694 seconds