• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

Sun, Guangyuan 01 December 2015 (has links)
This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multiphase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of particle velocity and particle number distribution are illustrated. The simulation results indicate that the model qualitatively captures the turbulent modulation with the presence of difference particle classes with different solid loadings. The model is then extended to simulate temperature evolution of the particles in a nonisothermal hot jet, in which heat transfer between the particles and gas is considered. The flow is bounded by a wall on the one side of the domain. The simulations are performed over a range of particle inertia and thermal relaxation time scales and different initial particle locations. The present study investigates the post-blast-phase mixing between the particles, the environment that is intended to heat them up, and the ambient environment that dilutes the jet flow. The results indicate that the model can qualitatively predict the important particle statistics in jet flame.
2

Direct numerical simulation of particle-laden turbulence in a straight square duct

Sharma, Gaurav 30 September 2004 (has links)
Particle-laden turbulent flow through a straight square duct at Reτ = 300 is studied using direct numerical simulation (DNS) and Lagrangian particle tracking. A parallelized 3-D particle tracking direct numerical simulation code has been developed to perform the large-scale turbulent particle transport computations reported in this thesis. The DNS code is validated after demonstrating good agreement with the published DNS results for the same flow and Reynolds number. Lagrangian particle transport computations are carried out using a large ensemble of passive tracers and finite-inertia particles and the assumption of one-way fluid-particle coupling. Using four different types of initial particle distributions, Lagrangian particle dispersion, concentration and deposition are studied in the turbulent straight square duct. Particles are released in a uniform distribution on a cross-sectional plane at the duct inlet, released as particle pairs in the core region of the duct, distributed randomly in the domain or distributed uniformly in planes at certain heights above the walls. One- and two-particle dispersion statistics are computed and discussed for the low Reynolds number inhomogeneous turbulence present in a straight square duct. New detailed statistics on particle number concentration and deposition are also obtained and discussed.
3

Direct numerical simulation of particle-laden turbulence in a straight square duct

Sharma, Gaurav 30 September 2004 (has links)
Particle-laden turbulent flow through a straight square duct at Reτ = 300 is studied using direct numerical simulation (DNS) and Lagrangian particle tracking. A parallelized 3-D particle tracking direct numerical simulation code has been developed to perform the large-scale turbulent particle transport computations reported in this thesis. The DNS code is validated after demonstrating good agreement with the published DNS results for the same flow and Reynolds number. Lagrangian particle transport computations are carried out using a large ensemble of passive tracers and finite-inertia particles and the assumption of one-way fluid-particle coupling. Using four different types of initial particle distributions, Lagrangian particle dispersion, concentration and deposition are studied in the turbulent straight square duct. Particles are released in a uniform distribution on a cross-sectional plane at the duct inlet, released as particle pairs in the core region of the duct, distributed randomly in the domain or distributed uniformly in planes at certain heights above the walls. One- and two-particle dispersion statistics are computed and discussed for the low Reynolds number inhomogeneous turbulence present in a straight square duct. New detailed statistics on particle number concentration and deposition are also obtained and discussed.

Page generated in 0.0622 seconds