• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and testing of CLT panels for evaluation of stiffness

Svensson Meulmann, Sebastian, Latifi, Egzon January 2021 (has links)
The use of timber in building structures is steadily increasing. cross laminated timber (CLT) is an engineered wood product made of an uneven number of layers of lamellas glued at an angle of 90 degrees to each other. This gives CLT high stiffness and strength to bending in all directions, and capability of taking load both in-plane and out-of-plane. Due to the large size of CLT elements, they allow for quick assembly of strong structures. Due to both economic and environmental reasons it is important for producers of CLT to optimize the use of the wood material by using the timber with higher stiffness and strength where it is most needed. This thesis is about evaluating the bending and shear stiffness of CLT elements, when used as plates, depending on the quality of wood used in the different layers. Four-point bending tests are carried out on elements of different compositions and a parametrized finite element model is created. Thus, the model is validated on the basis of experimental tests to evaluate the influence of different quality of different layers. The measured dynamic MoE proved to have good potential to be used as the longitudinal bending stiffness in an FE-model, with a deviation from the experimental tests of less than 1%. There is a strong correlation between the bending stiffness and bending strength of the plates. The effective rolling shear modulus in pine was calculated to be around 170 MPa for pine of dimension 40 x 195 mm2 . Grading the boards into two different classes used for different layers proved to increase the MoE of the plates by 11-17% for 3- and 5-layer CLT.
2

Sportovní centrum Za Lužánkami Brno / Sport Centre Za Lužánkami Brno

Skořepová, Lucie January 2016 (has links)
This thesis analyze the conception of the sport centre in Brno za Lužánkami. The area has a very extensive sport history, which dates back to 1922. Nowadays this topic has been very discussed because of the hockey and football history in the place of Lužánky. Hockey and football teams were forced to abandon Lužánky as a consequence of decrepitude and very bad technical aspects of the buildings. The diploma thesis deals with the new concept of the entire area where the professional and leisure sport activities will take place. The extensive architectural study of the multifunctional hockey stadium resolves the location of the object on the same place as the previous stadium. It put emphasis on the generous scattering area around the stadium, easy navigation and placement of the entrances from all around the object. The multifunctional usage of the stadium is solved by the telescopic grandstand and it offers the standard capacity of 10 500 spectators at a hockey match and up to 14 300 spectators at a concert event. The main expression element of the exterior of the stadium are the facade lamellas. They accentuate the ground floor with their dynamic placing and clearly indicate the main entrances to the object. In the night the glasses lamellas are shined by the integrated LED lights and enable to switch endless different faces of the stadium according by the current occasion.
3

Traitements thermomécaniques des colonies de lamelles parallèles du Zircaloy-4 trempé-β. / Thermomechanical processing of colonies of parallel lamellas in β-treated Zircaloy-4

Ben Ammar, Yamen 14 December 2012 (has links)
Le Zircaloy-4 utilisé comme matériau de gainage des combustibles nucléaires est trempé β puis filé sur aiguille dans le haut domaine α. La microstructure de trempe, qui conditionne les opérations de mise en forme ultérieures, se présente sous deux formes : vannerie ou colonies de lamelles parallèles. Ces dernières se fragmentent difficilement lorsqu’elles sont normales à l’effort de compression. La thèse étudie trois aspects de ce phénomène. Le premier concerne les conditions de trempe : temps d’homogénéisation dans le domaine β et vitesse de refroidissement. Une adaptation au Zircaloy-4 de l’essai Jominy montre que ces deux paramètres ont une influence décisive sur la taille des colonies (par l’intermédiaire de la taille des grains β) et sur l’épaisseur des lamelles. Le second présente des essais de compression selon trois directions orthogonales. La troisième passe fragmente les colonies qui ont résisté aux deux autres et affine sensiblement la microstructure. A 750°C en particulier, un cycle de trois passes permet d’obtenir des grains de 30 µm ; mais les meilleurs résultats sont obtenus à 650°C (grains de 17 µm) et à grande vitesse de déformation (grains de 10 µm).Dans le troisième, un modèle de plasticité cristalline tridimensionnel implémenté dans le code d’éléments finis ABAQUS simule le comportement des lamelles sous l’effet de la contrainte. Il prend en compte leur orientation cristallographique en plus de leur morphologie. Dans la plupart des cas, les lamelles s’incurvent dès le début de la déformation macroscopique du matériau, ce qui induit des localisations de la déformation. / Zircaloy-4 used for fuel cladding in nuclear plants is quenched from the β range and then extruded and rolled in the upper α range. At the start of this mechanical process, the alloy possesses a lamellar, Widmanstätten microstructure. This one, which is critical for the subsequent forming process, appears under two forms: basket weave and colonies of parallel lamellas. These are difficult to break when they are normal to the compressive load. The thesis studies three aspects of this phenomenon. The first concerns the quenching conditions: homogenization time in the β range and cooling rate. An adaptation of the Jominy test to Zircaloy-4 shows that these two parameters have a decisive influence on the size of the colonies (via the β grain size) and the thickness of the lamellas. The second presents compression tests under three orthogonal directions. Results show that the third pass breaks the colonies that resisted to the previous attempts and refine noticeably the microstructure. In particular at 750°C, three passes are sufficient to obtain grains of 30 µm, but the best results are obtained at 650°C (grains of 17 µm) and at high strain rate (grains of 10 µm). Thirdly, a three-dimensional crystal plasticity model is implemented in the finite elements code ABAQUS to simulate the behaviour of lamellas under stress. It takes into account their crystallographic orientation in addition to their morphology. In most cases, the lamellas bend at the onset of the macroscopic deformation, which induces localization phenomena.

Page generated in 0.0369 seconds