• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Investigation Of Airfoils With Laminar Separation Bubbles And Effects Of Distributed Suction

Wahidi, Redha 11 December 2009 (has links)
In an effort to understand the behavior of the laminar separation bubbles on NACA 0012 and Liebeck LA2573a airfoils at different Reynolds numbers and angles of attack, the boundary layers on the solid airfoils were investigated by measuring the mean and fluctuating components of the velocity profiles over the upper surfaces of the airfoils. Surface pressure measurements were carried out to complete the mapping of the laminar separation bubble and to calculate the lift generated by the airfoils. The experiments were carried out at Reynolds numbers of 150,000 and 250,000. The locations of separation, transition and reattachment were determined as functions of angle of attack and Reynolds number for the two airfoils. The drag was estimated from wake pressure measurements and was based on the momentum deficit generated by the airfoil. The size and location of the laminar separation bubble did not show significant changes with Reynolds number and angle of attack for values of the angle of attack between 0 and 6 d grees. The baseline results of the size and location of the laminar separation bubble on the LA2573a airfoil were used to design a suction distribution. This suction distribution was designed based on Thwaites’ criterion of separation. The effects of applying suction on the size and location of the laminar separation bubble were investigated. The results showed that the suction distribution designed in this work was effective in controlling the size of the laminar separation bubble, maintaining an un-separated laminar boundary layer to the transition point, and controlling the location of transition. The effects of different suction rates and distributions on the drag were investigated. Drag reductions of 14-24% were achieved. A figure of merit was defined as drag reductions divided by the equivalent suction drag to assess the worthiness of the utilizing suction on low Reynolds number flows. The values of the figure of merit were around 4.0 which proved that the penalty of using suction was significantly less than the gain obtained in reducing the drag.
2

Experimental Testing of Low Reynolds Number Airfoils for Unmanned Aerial Vehicles

Li, Leon 04 December 2013 (has links)
This work is focused on the aerodynamics for a proprietary laminar flow airfoil for Unmanned Aerial Vehicle (UAV) applications. The two main focuses are (1) aerodynamic performance at Reynolds number on the order of 10,000, (2) the effect of a conventional hot-wire probe on laminar separation bubbles. For aerodynamic performance, pressure and wake velocity distributions were measured at Re = 40,000 and 60,000 for a range of angles of attack. The airfoil performed poorly for these Reynolds numbers due to laminar boundary layer separation. 2-D boundary layer trips significantly improved the lift-to-drag ratio. For probe effects, three Reynolds numbers were investigated (Re = 100,000, 150,000, and 200,000), with three angles of attack for each. Pressure and surface shear distributions were measured. Flow upstream of the probe tip was not affected. Transition was promoted downstream due to the additional disturbances in the separated shear layer.
3

Experimental Testing of Low Reynolds Number Airfoils for Unmanned Aerial Vehicles

Li, Leon 04 December 2013 (has links)
This work is focused on the aerodynamics for a proprietary laminar flow airfoil for Unmanned Aerial Vehicle (UAV) applications. The two main focuses are (1) aerodynamic performance at Reynolds number on the order of 10,000, (2) the effect of a conventional hot-wire probe on laminar separation bubbles. For aerodynamic performance, pressure and wake velocity distributions were measured at Re = 40,000 and 60,000 for a range of angles of attack. The airfoil performed poorly for these Reynolds numbers due to laminar boundary layer separation. 2-D boundary layer trips significantly improved the lift-to-drag ratio. For probe effects, three Reynolds numbers were investigated (Re = 100,000, 150,000, and 200,000), with three angles of attack for each. Pressure and surface shear distributions were measured. Flow upstream of the probe tip was not affected. Transition was promoted downstream due to the additional disturbances in the separated shear layer.
4

Implicit Large Eddy Simulation of Low-Reynolds-Number Transitional Flow Past the SD7003 Airfoil

Galbraith, Marshall Chistopher 27 July 2009 (has links)
No description available.
5

Experimental Investigation Of Boundary Layer Separation Control Using Steady Vortex Generator Jets On Low Pressure Turbines

Dogan, Eda 01 June 2012 (has links) (PDF)
This thesis presents the results of an experimental study that investigates the effects of steady vortex generator jets (VGJs) integrated to a low pressure turbine blade to control the laminar separation bubble occurring on the suction surface of the blade at low Reynolds numbers. The injection technique involves jets issued from the holes located near the suction peak of the test blade which is in the middle of a five-blade low speed linear cascade facility. Three injection cases are tested with different blowing ratio values ranging from low to high. Surface pressure and particle image velocimetry (PIV) measurements are performed. The results show that steady VGJ is effective in eliminating the laminar separation bubble. Also it is observed that to have fully developed attached boundary layer, blowing ratio should be chosen accordingly since a very thin separation zone still exists at low blowing ratios.
6

Étude d'écoulements transitionnels et hors équilibre par des approches DNS et RANS. / Study of transitional and non-equilibrium flows through DNS and RANS approaches.

Laurent, Célia 10 December 2012 (has links)
Le décrochage est un phénomène aérodynamique instationnaire susceptible d'apparaître sur de nombreux profils aérodynamiques. Il résulte d'un décollement important de l'écoulement vis-à-vis de la paroi de l'aile et dégrade considérablement les performances de vol. Sur certains profils de pales d'hélicoptères, d'éoliennes ou de rotors, ce phénomène se produit dans des conditions d'utilisation normales et justifie la recherche de méthodes de modélisation accessibles industriellement. Le décrochage est initié au bord d'attaque par l'apparition d'une petite région de recirculation de fluide appelée bulbe de décollement laminaire où l'écoulement transitionne de l'état laminaire vers l'état turbulent. Ce phénomène encore mal connu met en jeu transition et écoulements hors équilibre auxquels les outils de modélisation RANS habituellement employés ne sont pas adaptés. Dans cette étude, un bulbe transitionnel typique d'un écoulement de bord d'attaque de pale d'hélicoptère (profil OA209 à un nombre de Reynolds Rec∞=1.8x106 et 15° d'incidence) est isolé sur une plaque plane. Une simulation DNS de cet écoulement est réalisée à l'aide du logiciel FUNk de l'ONERA afin de servir de base de données pour l'amélioration des modèles RANS. L'évolution des bilans de l'équation de transport de l'énergie cinétique turbulente ainsi que les principales hypothèses RANS (isotropie de la turbulence, Boussinesq, équilibre production/dissipation) sont analysées. Une étude des principaux modèles RANS développés dans le logiciel elsA de l'ONERA est ensuite réalisée en pondérant les grandeurs turbulentes par une fonction de transition reproduisant l'intermittence de la turbulence. Le modèle k-ω de Wilcox couplé à une fonction de transition optimisée a donné les résultats les plus proches de la DNS et a donc été l'objet d'une analyse plus approfondie, notamment une évaluation des principales équations bilans et une application de ce modèle et de sa méthode de transition à un cas de transition naturelle de plaque plane. / The stall is an unsteady aerodynamic phenomenon that may occur on many aerodynamic profiles. It consists in a large separation of the flow from the wall of the wing and significantly deteriorates the flight performances. On some blade profiles such as helicopters, turbines or rotors, this phenomenon occurs under normal conditions of use and justifies the research of industrially accessible modeling methods. The stall is initiated at the leading edge by the appearance of a small region of fluid recirculation called a “laminar separation bubble” where the flow transitions from the laminar to the turbulent state. This still poorly understood phenomenon involves transition and non-equilibrium flows for which commonly used RANS modeling tools are not suitable. In this study, a transitional bubble typical of an helicopter leading edge flow (OA209 profile at a Reynolds number Rec∞=1.8x106 and 15° of incidence) is reproduced on a flat plate. A DNS simulation of this flow is performed using the ONERA FUNk software to serve as a database for RANS models improvements. The evolution of turbulent kinetic energy budgets as well as the main RANS assumptions (isotropy of turbulence, Boussinesq hypothesis, production/dissipation balance) are analyzed. The main RANS models developed in the ONERA elsA software are then studied by weighting the turbulent quantities with a transition function reproducing the intermittency of the turbulence. The k-ω Wilcox model coupled with an optimized transition function gave the best results and was therefore kept for a more in-depth analysis, including an assessment of the main budgets and an application of this model and its transition method to a natural transition test case on a flat plate.
7

Numerical analysis of the solidity effects over the aerodynamic performance of a small wind turbine

Fleck, Gustavo Dias January 2017 (has links)
O presente trabalho apresenta uma metodologia de simulação numérica de perfis aerodinâmicos bidimensionais com foco na utilização para o projeto e otimização de pás e rotores de pequenas turbinas eólicas de eixo horizontal, bem como o emprego desses métodos em simulações nas quais efeitos de alta solidez do rotor e baixos números de Reynolds são avaliados. Essa metodologia inclui geração de malhas, seleção de métodos numéricos e validação, tendo as escolhas sido guiadas pelas práticas mais bem sucedidas na simulação de perfis aerodinâmicos, e foi aplicada na simulação dos aerofólios NACA 0012, S809 e SD7062. O código comercial ANSYS Fluent foi utilizado em todas as simulações. Na simulação de aerofólios isolados a altos números de Reynolds dos perfis NACA 0012 e S809, o modelo Transition SST (γ-Reθ) apresentou resultados mais próximos a dados experimentais do que aqueles apresentados pelo modelo k-ω SST para CL e CD, além de produzir resultados para CP que mostraram boa precisão quando comparados aos mesmos dados experimentais. Resultados de CL, CD, CF e CP são apresentados para 20 diferentes condições de operação às quais o perfil SD7062 foi submetido, com números de Reynolds variando entre 25.000 e 125.000. As distribuições dos dois últimos coeficientes sobre os dorsos do aerofólio evidenciam com clareza a presença e magnitude da bolha de separação laminar. Os coeficientes de sustentação e arrasto mostram o impacto negativo da presença da bolha nessa faixa de números de Reynolds. Além disso, nos casos simulados, o arrasto aumenta em função da diminuição do Re. Um design de pá produzido com o auxílio do código de otimização SWRDC, baseado em algoritmos genéticos, é apresentado. Três seções ao longo da envergadura dessa pá foram simuladas em uma bateria de 45 simulações, sob diversas condições de operação em função de solidez, ângulo de ataque e razão de velocidade de ponta de pá. Esses resultados mostram que a bolha de separação laminar se move na direção do bordo de ataque com o aumento da solidez, do ângulo de ataque e da TSR. Além disso, distribuições do CP mostram aumento de pressão em ambos os dorsos do perfil quando submetido aos efeitos da solidez, embora esses efeitos tenham sido responsáveis por um aumento na relação CL/CD nos casos estudados. / This thesis presents a methodology of two-dimensional airfoil simulation focusing on its application on the design and optimization of blades and rotors of small horizontal axis wind turbines, and its application in a set of numerical simulations involving high rotor solidity and low-Re effects. This methodology includes grid generation, selection of numerical methods and validation, reflecting the most successful practices in airfoil simulation, and was applied in the simulation of the NACA 0012, S809 and SD7062 airfoils. The ANSYS Fluent commercial code was used in all simulations. Results for the isolated NACA 0012 and S809 airfoils at high Reynolds numbers show that the Transition SST (γ-Reθ) turbulence model produces results closer to experimental data than those yielded by the SST k-ω model for CL and CD, having also produced CP plots that show good agreement to the same experimental data. Plots of CL, CD, CF and CP for the SD7062 airfoil are presented, for simulations at 20 different operating conditions. The CF and CP distributions evidence the negative impact of the laminar separation bubble in the range of Reynolds numbers evaluated. Results show that, for Re between 25,000 and 125,000, drag increases with decreasing Re. A blade design generated using the SWRDC optimization code, based on genetic algorithms, is presented. Three sections of the resulting blade shape were selected and were tested in a set of 45 simulations, under an array of operating conditions defined by solidity, angle of attack and TSR. Results show that the laminar separation bubble moves towards the leading edge with increasing solidity, angle of attack and TSR. Furthermore, CP plots show an increase in pressure on both surfaces when the airfoil is subject to solidity effects, although these effects show an increase in the lift-to-drag ratio at the conditions evaluated.
8

Dynamics Of Early Stages Of Transition In A Laminar Separation Bubble

Suhas, Diwan Sourabh 02 1900 (has links)
This is an experimental and theoretical study of a laminar separation bubble and the associated transition dynamics in its early stages. The separation of a laminar boundary layer from a solid surface is prevalent in very many flow situations such as over gas turbine blades (especially in the low-pressure turbine stage) and the wings of micro-aero-vehicles (MAVs) that operate at fairly low Reynolds numbers. Flow separation occurs in such cases due to the presence of an adverse pressure gradient. The separated shear layer becomes unstable due to the presence of an inflection point and presumably transitions to turbulence rapidly. Eventually, there is reattachment back to the solid surface further downstream, if conditions are right. The region enclosed by the shear layer is called a laminar separation bubble and has been a subject of many studies in the past. The present experiments have been conducted in a closed-circuit wind tunnel. A separation bubble was obtained on the upper surface of a flat plate by appropriately contouring the top wall of the tunnel. Four different techniques were used for qualitative and quantitative study viz. surface flow visualisation, smoke flow visualisation, surface pressure measurements and hotwire anemometry. Response of the bubble to both natural as well as artificial (impulsive excitation) disturbance environment has been studied. Linear stability analyses (both Orr-Sommerfeld and Rayleigh calculations), in the spatial framework, have been performed for the mean velocity profiles starting from an attached adverse pressure gradient boundary layer all the way up to the front portion of the separation bubble region (i.e. up to the end of the dead-air region where linear evolution of disturbances could be expected). The measured velocity profiles (both attached and separated) were fitted with analytical model profiles for doing stability calculations. A separation bubble consists of aspects of both wall-bounded and wall-free shear layers and therefore both viscous and inviscid mechanisms are expected to be at play. Most of the studies in the literature point to the inviscid instability associated with the shear layer to be the main mechanism. The main aim of the present work is to understand the exact origin of the primary instability mechanism responsible for the amplification of disturbances. We argue that at least up to the front portion of the bubble, the instability mechanism is due to the inflectional mode associated with the mean velocity profile. However, the seeds of this inviscid inflectional instability could be traced back to the attached boundary layer upstream of separation. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the free shear layer outside the bubble with its associated Kelvin-Helmholtz mechanism. Our contention is that only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum height of the mean bubble) that a description by Kelvin-Helmholtz instability paradigm with its associated scaling principles could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection point height and the vorticity thickness, and show its universality. Next, we theoretically investigate the role played by the re-circulating region of the separation bubble in the linear instability regime. In the re-circulating region near the wall, associated with the so-called wall mode, the production of disturbance kinetic energy is found to be negative. This is a very interesting observation which has been cursorily noted in earlier studies. Here we show that the near-wall negative production region exerts a stabilising influence on the downstream travelling disturbances. A theoretical support for such a mechanism to exist close to the wall is presented. It is shown that the stabilising wall-proximity effect is not a peripheral aspect but has a significant effect on the overall stability especially for the waves close to the upper neutral branch. We demonstrate the appropriateness of inviscid analysis for the stability of the separated flow velocity profile away from the wall, by comparing the numerical solutions of Rayleigh and Orr-Sommerfeld equations. Following this, the analytical consequences of the Rayleigh equation such as the inflection point criterion and the Fjortoft criterion are derived for the wall-bounded inflectional velocity profiles. Furthermore, we also discuss the relevance of the negative production region towards flow control and management for the wall-bounded flows. It appears fruitful to divide the separation bubble region into two parts with respect to the nature of disturbance dynamics: one outside the mean dividing streamline (which behaves as an amplifier) and the other inside the bubble corresponding to the re-circulating region (having oscillator type characteristics). To explore the oscillator-like behaviour of the bubble further, we have carried out spatio-temporal stability analysis of the reversed flow velocity profiles and determined the conditions for the onset of absolute instability. We contend that the presence of the negative production region for the upstream travelling waves has a restraining effect arresting the tendency of the flow (both wall-free and wall-bounded) to become absolutely unstable and thereby requiring a particular threshold of the backflow velocity to be crossed for its realisation. Moreover, the delay in the onset of absolute instability for a wall-bounded profile as compared to a free shear layer is attributed to a certain ‘negative-drag’ effect of the wall on the overall flow which increases the group velocities for the wall-bounded flows. A related theme in the literature regarding the dynamics of laminar separation bubbles is the so-called ‘bursting’ of the bubble wherein there is a sudden increase in the length and height of the bubble as some critical conditions are reached. Bubbles before bursting are termed as ‘short’ bubbles and those after bursting as ‘long’ bubbles. In this work, we provide a criterion to predict bursting which is a refinement over the existing criteria. The proposed criterion takes into account not just the length of the bubble but also the maximum height and it is shown to be more universal in differentiating short bubbles from the long ones, as compared to the other criteria. We also present a hypothesis regarding the sequence of events leading to bubble bursting by relating its onset to the instability of the re-circulating region. For this we observe that as the amount of backflow velocity is increased for a reversed flow velocity profile, the inflection point moves inside the mean dividing streamline and this happens before the onset of absolute instability. This causes a vorticity maximum to develop inside the re-circulating region which could lead to the instability of the closed streamlines with respect to two-dimensional cylindrical disturbances. The actual bursting process may be expected to involve non-linear interactions of the disturbances and the long bubble could be a nonlinearly saturated state of the instability of the re-circulating region. In order to explore the three-dimensionality associated with the bubble, extensive surface flow visualisation experiments have been performed. The surface streamline pattern is obtained for the entire span of the plate for three different freestream velocities. The patterns have been interpreted using topological ideas and various critical points have been identified. It is shown that the arrangement of critical points satisfies the ‘index theorem’ which is a topological necessity and the streamline patterns are ‘structurally stable’. An interesting observation from these patterns is the presence of three-dimensionality upstream of the separation line close to the wall even though the oncoming flow is nominally two-dimensional. Using the critical point theory, we propose a hypothesis which could be used to construct a semi-empirical model wherein the critical points are assigned with a quantity called ‘strength’ for determining the extent of upstream influence of a given separation line. Finally, we derive a necessary condition for the existence of inviscid spatial instability in plane parallel flows. It states that for spatial instability the curvature of the velocity profile should be positive in some region of the profile. This includes Rayleigh’s inflection point theorem (which was proposed and proved by Rayleigh for temporal instability) as a special case. It thus provides a rigorous basis for applying the inflection point criterion to the flows in the framework of spatial stability theory (which we have used extensively in the present thesis). Moreover, the condition derived here is more general as it also includes velocity profiles with the curvature positive everywhere which are excluded by Rayleigh’s theorem in the temporal framework. An example of such a profile is presented (Couette-Poiseuille flow with adverse pressure gradient) and it is shown that this flow is an exceptional case which is temporally stable but spatially unstable. Eigenvalue calculations as well as energy considerations suggest that the mechanism governing instability of this flow is inviscid and non-inflectional in character. This is a new result which could have important implications in understanding the instability dynamics of parallel flows.
9

Numerical analysis of the solidity effects over the aerodynamic performance of a small wind turbine

Fleck, Gustavo Dias January 2017 (has links)
O presente trabalho apresenta uma metodologia de simulação numérica de perfis aerodinâmicos bidimensionais com foco na utilização para o projeto e otimização de pás e rotores de pequenas turbinas eólicas de eixo horizontal, bem como o emprego desses métodos em simulações nas quais efeitos de alta solidez do rotor e baixos números de Reynolds são avaliados. Essa metodologia inclui geração de malhas, seleção de métodos numéricos e validação, tendo as escolhas sido guiadas pelas práticas mais bem sucedidas na simulação de perfis aerodinâmicos, e foi aplicada na simulação dos aerofólios NACA 0012, S809 e SD7062. O código comercial ANSYS Fluent foi utilizado em todas as simulações. Na simulação de aerofólios isolados a altos números de Reynolds dos perfis NACA 0012 e S809, o modelo Transition SST (γ-Reθ) apresentou resultados mais próximos a dados experimentais do que aqueles apresentados pelo modelo k-ω SST para CL e CD, além de produzir resultados para CP que mostraram boa precisão quando comparados aos mesmos dados experimentais. Resultados de CL, CD, CF e CP são apresentados para 20 diferentes condições de operação às quais o perfil SD7062 foi submetido, com números de Reynolds variando entre 25.000 e 125.000. As distribuições dos dois últimos coeficientes sobre os dorsos do aerofólio evidenciam com clareza a presença e magnitude da bolha de separação laminar. Os coeficientes de sustentação e arrasto mostram o impacto negativo da presença da bolha nessa faixa de números de Reynolds. Além disso, nos casos simulados, o arrasto aumenta em função da diminuição do Re. Um design de pá produzido com o auxílio do código de otimização SWRDC, baseado em algoritmos genéticos, é apresentado. Três seções ao longo da envergadura dessa pá foram simuladas em uma bateria de 45 simulações, sob diversas condições de operação em função de solidez, ângulo de ataque e razão de velocidade de ponta de pá. Esses resultados mostram que a bolha de separação laminar se move na direção do bordo de ataque com o aumento da solidez, do ângulo de ataque e da TSR. Além disso, distribuições do CP mostram aumento de pressão em ambos os dorsos do perfil quando submetido aos efeitos da solidez, embora esses efeitos tenham sido responsáveis por um aumento na relação CL/CD nos casos estudados. / This thesis presents a methodology of two-dimensional airfoil simulation focusing on its application on the design and optimization of blades and rotors of small horizontal axis wind turbines, and its application in a set of numerical simulations involving high rotor solidity and low-Re effects. This methodology includes grid generation, selection of numerical methods and validation, reflecting the most successful practices in airfoil simulation, and was applied in the simulation of the NACA 0012, S809 and SD7062 airfoils. The ANSYS Fluent commercial code was used in all simulations. Results for the isolated NACA 0012 and S809 airfoils at high Reynolds numbers show that the Transition SST (γ-Reθ) turbulence model produces results closer to experimental data than those yielded by the SST k-ω model for CL and CD, having also produced CP plots that show good agreement to the same experimental data. Plots of CL, CD, CF and CP for the SD7062 airfoil are presented, for simulations at 20 different operating conditions. The CF and CP distributions evidence the negative impact of the laminar separation bubble in the range of Reynolds numbers evaluated. Results show that, for Re between 25,000 and 125,000, drag increases with decreasing Re. A blade design generated using the SWRDC optimization code, based on genetic algorithms, is presented. Three sections of the resulting blade shape were selected and were tested in a set of 45 simulations, under an array of operating conditions defined by solidity, angle of attack and TSR. Results show that the laminar separation bubble moves towards the leading edge with increasing solidity, angle of attack and TSR. Furthermore, CP plots show an increase in pressure on both surfaces when the airfoil is subject to solidity effects, although these effects show an increase in the lift-to-drag ratio at the conditions evaluated.
10

Numerical analysis of the solidity effects over the aerodynamic performance of a small wind turbine

Fleck, Gustavo Dias January 2017 (has links)
O presente trabalho apresenta uma metodologia de simulação numérica de perfis aerodinâmicos bidimensionais com foco na utilização para o projeto e otimização de pás e rotores de pequenas turbinas eólicas de eixo horizontal, bem como o emprego desses métodos em simulações nas quais efeitos de alta solidez do rotor e baixos números de Reynolds são avaliados. Essa metodologia inclui geração de malhas, seleção de métodos numéricos e validação, tendo as escolhas sido guiadas pelas práticas mais bem sucedidas na simulação de perfis aerodinâmicos, e foi aplicada na simulação dos aerofólios NACA 0012, S809 e SD7062. O código comercial ANSYS Fluent foi utilizado em todas as simulações. Na simulação de aerofólios isolados a altos números de Reynolds dos perfis NACA 0012 e S809, o modelo Transition SST (γ-Reθ) apresentou resultados mais próximos a dados experimentais do que aqueles apresentados pelo modelo k-ω SST para CL e CD, além de produzir resultados para CP que mostraram boa precisão quando comparados aos mesmos dados experimentais. Resultados de CL, CD, CF e CP são apresentados para 20 diferentes condições de operação às quais o perfil SD7062 foi submetido, com números de Reynolds variando entre 25.000 e 125.000. As distribuições dos dois últimos coeficientes sobre os dorsos do aerofólio evidenciam com clareza a presença e magnitude da bolha de separação laminar. Os coeficientes de sustentação e arrasto mostram o impacto negativo da presença da bolha nessa faixa de números de Reynolds. Além disso, nos casos simulados, o arrasto aumenta em função da diminuição do Re. Um design de pá produzido com o auxílio do código de otimização SWRDC, baseado em algoritmos genéticos, é apresentado. Três seções ao longo da envergadura dessa pá foram simuladas em uma bateria de 45 simulações, sob diversas condições de operação em função de solidez, ângulo de ataque e razão de velocidade de ponta de pá. Esses resultados mostram que a bolha de separação laminar se move na direção do bordo de ataque com o aumento da solidez, do ângulo de ataque e da TSR. Além disso, distribuições do CP mostram aumento de pressão em ambos os dorsos do perfil quando submetido aos efeitos da solidez, embora esses efeitos tenham sido responsáveis por um aumento na relação CL/CD nos casos estudados. / This thesis presents a methodology of two-dimensional airfoil simulation focusing on its application on the design and optimization of blades and rotors of small horizontal axis wind turbines, and its application in a set of numerical simulations involving high rotor solidity and low-Re effects. This methodology includes grid generation, selection of numerical methods and validation, reflecting the most successful practices in airfoil simulation, and was applied in the simulation of the NACA 0012, S809 and SD7062 airfoils. The ANSYS Fluent commercial code was used in all simulations. Results for the isolated NACA 0012 and S809 airfoils at high Reynolds numbers show that the Transition SST (γ-Reθ) turbulence model produces results closer to experimental data than those yielded by the SST k-ω model for CL and CD, having also produced CP plots that show good agreement to the same experimental data. Plots of CL, CD, CF and CP for the SD7062 airfoil are presented, for simulations at 20 different operating conditions. The CF and CP distributions evidence the negative impact of the laminar separation bubble in the range of Reynolds numbers evaluated. Results show that, for Re between 25,000 and 125,000, drag increases with decreasing Re. A blade design generated using the SWRDC optimization code, based on genetic algorithms, is presented. Three sections of the resulting blade shape were selected and were tested in a set of 45 simulations, under an array of operating conditions defined by solidity, angle of attack and TSR. Results show that the laminar separation bubble moves towards the leading edge with increasing solidity, angle of attack and TSR. Furthermore, CP plots show an increase in pressure on both surfaces when the airfoil is subject to solidity effects, although these effects show an increase in the lift-to-drag ratio at the conditions evaluated.

Page generated in 0.5233 seconds