• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un dispositif expérimental pour l'analyse de la structure de flammes de prémélanges à haute pression par diagnostics laser : application aux flammes méthane/air et biogaz/air / Implementation of a combustion facility for flame structure analysis at high-pressure : application to methane/air and biogas/air flames

Matynia, Alexis 06 April 2011 (has links)
L’optimisation des systèmes de production d’énergie par combustion requiert une connaissance précise de la cinétique de combustion. Cependant, la majorité des systèmes de production d’énergie par combustion fonctionnent à haute pression et il est reconnu que la pression a une influence sur la cinétique de combustion. En laboratoire, l’analyse de la structure de flamme laminaire se présente comme un outil puissant pour étudier la chimie de la combustion. A ce jour, la plupart des travaux menés ont été réalisés à des pressions inférieures ou égales à la pression atmosphérique. Au cours de cette thèse, un dispositif expérimental pour l’analyse de structure de flammes laminaires, à contre-courants et à haute pression a été mis en place. Il permet de stabiliser des flammes de CH4/air et CH4/CO2/air jusqu’à 0,7 MPa et l’étude de leur structure par diagnostics laser. Les profils de concentration de OH dans les flammes CH4/air et CH4/CO2/air à différentes richesses (=0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser et calibrés en concentration par absorption laser. Pour cela, la longueur du milieu absorbant a été déterminée par Fluorescence Induite par Plan Laser (PLIF). Une attention particulière a été portée aux corrections du signal de fluorescence prenant en compte l’élargissement de raie et le taux de collisions, qui augmentent avec la pression. Les profils expérimentaux obtenus ont été comparés à la modélisation à l’aide du code de calcul OPPDIF et des mécanismes cinétiques GRI-Mech3.0 et GDFKin®3.0. En parallèle, une analyse spectroscopique des flammes de CH4/air à haute pression a été entreprise. / The optimisation of practical combustion devices requires a detailed knowledge of the combustion kinetic. However, most practical combustion systems operate at high pressure and it is known that pressure has an influence on combustion kinetics. In laboratory, the analysis of laminar flame structure is a powerful tool for studying combustion chemistry. However, most of studies have been realised at pressures under or equal to atmospheric pressure. During this thesis, an experimental device has been implemented for the study of the structure of high pressure counterflow flames. It allows the stabilisation and the study of CH4/air and CH4/CO2/air flame structure through laser diagnostics until 0.7 MPa. CH4/air and CH4/CO2/air flames have been studied for a various range of stoichiometry (equivalence ratios from 0.7 to 1.2) and pressures (0.1 MPa to 0.7 MPa). Experimental OH concentration profiles have been measured by Laser Induced Fluorescence and calibrated by laser absorption. To do this, absorption path length has been determined by Planar Laser Induced Fluorescence (PLIF). Great care has been attached to the determination of the fluorescence signal by taking into account the line broadening and de-excitation by quenching which both arise at high pressure. Experimental data were compared with modeling results obtained through the OPPDIF calculation code with GRI-Mech3.0 and GDFKin®3.0 kinetic mechanisms. In parallel, a spectroscopic analysis of the CH4/air flames has been undertaken.
2

Factors that limit control effectiveness in self-excited noise driven combustors

Crawford, Jackie H., III 27 March 2012 (has links)
A full Strouhal number thermo-acoustic model is purposed for the feedback control of self excited noise driven combustors. The inclusion of time delays in the volumetric heat release perturbation models create unique behavioral characteristics which are not properly reproduced within current low Strouhal number thermo acoustic models. New analysis tools using probability density functions are introduced which enable exact expressions for the statistics of a time delayed system. Additionally, preexisting tools from applied mathematics and control theory for spectral analysis of time delay systems are introduced to the combustion community. These new analysis tools can be used to extend sensitivity function analysis used in control theory to explain limits to control effectiveness in self-excited combustors. The control effectiveness of self-excited combustors with actuator constraints are found to be most sensitive to the location of non-minimum phase zeros. Modeling the non-minimum phase zeros correctly require accurate volumetric heat release perturbation models. Designs that removes non-minimum phase zeros are more likely to have poles in the right hand complex plane. As a result, unstable combustors are inherently more responsive to feedback control.
3

Formation des oxydes d'azote dans les flammes haute pression : étude expérimentale par fluorescence induite par laser : application aux flammes méthane/air et méthane/hydrogène/air / Nitric oxide formation in high pressure flames : experimental study by laser induced fluorescence : application to methane/air and methane/hydrogen/air flames

Molet, Julien 24 January 2014 (has links)
Le monoxyde d’azote (NO) est un polluant atmosphérique responsable d’effets nuisibles sur l’environnement et la santé. Afin de mieux contrôler ces émissions, il est indispensable de comprendre et de maîtriser leur formation,en particulier lors de la combustion à haute pression, domaine d’application industrielle (cas des turbines à gaz,des moteurs…). On distingue quatre voies principales de formation de NO : la voie thermique, la voie du NO précoce, la voie NNH et la voie N2O. L’objectif de cette thèse à caractère expérimentale est de compléter la base de données expérimentale déjà existante nécessaire à la compréhension et à l’identification de la contribution de chaque voie à la formation du NO à haute pression.Dans cette thèse, un dispositif de brûleurs à contre-courants a été utilisé pour étudier la structure de flammes laminaires, prémélangées à haute pression. Les profils de concentration de NO dans les flammes CH4/O2/N2 à différentes richesses (Фc =0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser. L’effet de l’ajout d’hydrogène (80%CH4/20%H2 : Application Hythane®) sur la formation de NO a également été étudié dans les flammes pauvres CH4/O2/N2. Le mécanisme cinétique GDF-Kin®3.0_NCN a été comparé aux mesures de NO disponibles dans la littérature ainsi qu’aux simulations des mécanismes cinétiques du Gaz Research Institute (version 2.11 et 3.0). Ces trois mécanismes ont été ensuite comparés aux mesures expérimentales réalisées dans ces travaux de thèse. / The nitric oxide (NO) is a pollutant responsible of detrimental effects on the environment and health. To better control these emissions, it’s crucial to understand and to control their formation, in particular during the combustion process at high pressure, area of industrial applications (gas turbines, engines…).There are four major routes of the NO formation: the thermal route, the prompt-NO route, the NNH route and theN2O route. The aim of this experimental thesis is to complete the existing experimental database which isnecessary to the understanding and the identification of the contribution from each route to the NO formation at high pressure.In this thesis, a facility of two twin counter-flow burners was used to study the structure of the laminar, premixed flames at high pressure. Experimental NO concentration profiles have been measured in CH4/O2/N2 flames for arange of equivalence ratio (from 0.7 to 1.2) and pressures (from 0.1 to 0.7 MPa) by Laser Induced Fluorescence.The effect of adding hydrogen (80%CH4/20%H2: Hythane® application) on the NO formation has been also studied in lean CH4/O2/N2 flames. The GDF-Kin®3.0_NCN kinetic mechanism has been compared to experimental data from the literature and also compared to the simulations from the Gas Research Institute mechanisms (version 2.11 and 3.0). These three mechanisms have been finally compared to the experimental data from this thesis.

Page generated in 0.0586 seconds