• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 110
  • 86
  • 76
  • 54
  • 12
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 764
  • 296
  • 238
  • 187
  • 152
  • 126
  • 94
  • 89
  • 87
  • 82
  • 82
  • 80
  • 79
  • 78
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Three dimensional analysis of fibre reinforced polymer laminated composites

Haji Kamis, Haji Elmi Bin January 2012 (has links)
The thesis presents the structural behaviour of fibre reinforced polymer (FRP) laminated composites based on 3D elasticity formulation and finite element modeling using Abaqus. This investigation into the performance of the laminate included subjecting it to various parameters i.e. different boundary conditions, material properties and loading conditions to examine the structural responses of deformation and stress. Both analytical and numerical investigations were performed to determine the stress and displacement distributions at any point of the laminates. Other investigative work undertaken in this study includes the numerical analysis of the effect of flexural deformation of the FRP strengthened RC slab. The formulation of 3D elasticity and enforced boundary conditions were applied to establish the state equation of the laminated composites. Transfer matrix and recursive solutions were then used to produce analytical solutions which satisfied all the boundary conditions throughout all the layers of the composites. These analytical solutions were then compared with numerical analysis through one of the commercial finite element analysis programs, Abaqus. Out of wide variety of element types available in the Abaqus element library, shells and solids elements are chosen to model the composites. From these FEM results, comparison can be made to the solution obtained from the analytical. The novel work and results presented in this thesis are the analysis of fully clamped laminated composite plates. The breakthrough results of fully clamped laminated composite plate can be used as a benchmark for further investigation. These analytical solutions were verified with FEM solutions which showed that only the solid element (C3D20) exhibited close results to the exact solutions. However, FEM gave poor results on the transverse shear stresses particularly at the boundary edges. As an application of the work above, it is noticed that the FEM results for the FRP strengthened RC slab, agreed well with the experimental work conducted in the laboratory. The flexural capacity of the RC slab showed significant increase, both at service and ultimate limit states, after FRP sheets were applied at the bottom surface of the slab. Given the established and developed programming codes, exact solutions of deflection and stresses can be determined for any reduced material properties, boundary and loading conditions, using Mathematica.
232

Direct synthesis of magnetic bimetallic alloy nanoparticles from organometallic precursors and their applications

Meng, Zhengong 09 May 2016 (has links)
1.1\xMagnetic nanoparticles (NPs) with sizes ranging from 2 to 20 nm in diameter represent an important class of artificial nanostructured materials, since the NP size is comparable to the size of a magnetic domain. They have potential applications in data storage, catalysis, permanent magnetic nanocomposites, and biomedicine.;1.2\xTo begin with, a brief overview on the background of Fe-based bimetallic NPs and their applications for data-storage and catalysis was presented in Chapter 1.;1.3\xIn Chapter 2, L10-ordered FePt NPs with high coercivity were directly prepared from a novel bimetallic acetylenic alternating copolymer P3 by a one-step pyrolysis method without post-thermal annealing. The chemical ordering, morphology and magnetic properties were studied. Magnetic measurements showed that a record coercivity of 3.6 T (1 T = 10 kOe) was obtained in FePt NPs. By comparison of the resultant FePt NPs synthesized under Ar and Ar/H2, the characterization proved that the incorporation of H2 would affect the nucleation and promote the growth of FePt NPs. The L10 FePt NPs were also successfully patterned on Si substrate by nanoimprinting lihthography (NIL). The highly ordered ferromagnetic arrays on a desired substrate for bit-patterned media (BPM) were studied and promised bright prospects for the progress of data-storage.;1.4\xFuthermore, we also reported a new FePt-containing metallopolymer P4 as the single-source precursor for metal alloy NPs synthesis, where the metal fractions were on the side chain and the ratio could be easily controlled. This polymer was synthesized from random copolymer poly(styrene-4-ethynylstyrene) PES-PS and bimetallic precursor TPy-FePt ([Pt(4-ferrocenyl-(NN̂N̂))Cl]Cl) by Sonogashira coupling reaction. After pyrolysis of P4, the stoichiometry of Fe and Pt atoms in the synthesized NPs (NPs) is nearly close to 1:1, which is more precise than using TPy-FePt as precursor. Polymer P4 was also more favorable for patterning by high throughout NIL as compared to TPy-FePt. Ferromagnetic nanolines, potentially as bit-patterned magnetic recording media, were successfully fabricated from P4 and fully characterized.;1.6\xBesides, a bimetallic complex TPy-FePd-2 was prepared and used as a single-source precursor to synthesize ferromagnetic FePd NPs by one-pot pyrolysis. The resultant FePd NPs have a mean size of 19.8 nm and show the coercivity of 1.02 kOe. In addition, the functional group (-NCMe) in TPy-FePd-2 was easily substituted by a pyridyl group. A random copolymer PS-P4VP was used to coordinate with TPy-FePd-2, and the as-synthesized polymer made the metal fraction disperse evenly along the flexible chain. Fabrication of FePd NPs from the polymers was also investigated, and the size could be easily controlled by tuning the metal fraction in polymer. FePd NPs with the mean size of 10.9, 14.2 and 17.9 nm were prepared from the metallopolymer with 5 wt%, 10 wt% and 20wt% of metal fractions, respectively.;1.7\xIn Chapter 4, molybdenum disulfide (MoS2) monolayers decorated with ferromagnetic FeCo NPs on the edges were synthesized through a one-step pyrolysis of precursor molecules in an argon atmosphere. The FeCo precursor was spin coated on the MoS2 monolayer grown on Si/SiO2 substrate. Highly-ordered body-centered cubic (bcc) FeCo NPs were revealed under optimized pyrolysis conditions, possessing coercivity up to 1000 Oe at room temperature. The FeCo NPs were well-positioned along the edge sites of MoS2 monolayers. The vibration modes of Mo and S atoms were confined after FeCo NPs decoration, as characterized by Raman shift spectroscopy. These MoS2 monolayers decorated with ferromagnetic FeCo NPs can be used for novel catalytic materials with magnetic recycling capabilities. The sizes of NPs grown on MoS2 monolayers are more uniform than from other preparation routines. Finally, the optimized pyrolysis temperature and conditions provide receipts for decorating related noble catalytic materials.;1.8\xFinally, Chapters 5 and 6 present the concluding remarks and the experimental details of the work described in Chapters 2-4.
233

Towards a Semantic Knowledge Management Framework for Laminated Composites

Premkumar, Vivek 23 November 2015 (has links)
The engineering of laminated composite structures is a complex task for design engineers and manufacturers, requiring significant management of manufacturing process and materials information. Ontologies are becoming increasingly commonplace for semantically representing knowledge in a formal manner that facilitates sharing of rich information between people and applications. Moreover, ontologies can support first-order logic and reasoning by rule engines that enhance automation. To support the engineering of laminated composite structures, this work developed a novel Semantic LAminated Composites Knowledge management System (SLACKS) that is based on a suite of ontologies for laminated composites materials and design for manufacturing (DFM) and their integration into a previously developed engineering design framework. By leveraging information from CAD/FEA tools and materials data from online public databases, SLACKS uniquely enables software tools and people to interoperate, to improve communication and automate reasoning during the design process. With SLACKS, this research shows the power of integrating relevant domains of the product lifecycle, such as design, analysis, manufacturing and materials selection through the engineering case study of a wind turbine blade. The integration reveals a usable product lifecycle knowledge tool that can facilitate efficient knowledge creation, retrieval and reuse, from design inception to manufacturing of the product.
234

Deformation av korslimmad skiva av ek till följd av fuktförändringar / Deformation of oak boards following moisturechanges

Rytkönen, Lucas January 2022 (has links)
Cross-laminated boards is a technique of joining together lamellas of wood to create more dimensionally stable boards. Ballingslöv uses cross-laminated boards in their production and sometimes they observer cupping in the boards that may halt production. To find out why this might be occurring a study was performed where cross-laminated oakboards (Quercus Robur. L) were placed in three different climates for twelve days. During these twelve days cupping, weight, and thickness was measured every twenty-four hours. The results showed that the temperature and relative humidity of the surrounding environment affected how much and how fast cupping and weight change occurred in the boards.  It was concluded that the study needs to be replicated on a larger scale to increase the certainty of the results.
235

Flexural Strength and Behavior of Timber-Concrete Composite Floors with Hexagonally Headed Self-Tapping Screw Shear Connectors

Arrington, Benjamin David 07 April 2022 (has links)
Timber-concrete composite (TCC) floor systems consist of a bottom layer of wood that is connected to a top layer of concrete using shear connectors. The shear connectors resist slip between the layers, thus allowing wood and concrete develop composite action when subjected to flexure. The objective of this study is to determine the flexural strength and behavior of TCC floor systems that consist of a cross laminated timber wood layer connected to a concrete top layer using hexagonally headed self-tapping screw shear connectors. To accomplish the objective, coupon specimens and full-scale TCC floor panels were tested, and a finite element modelling approach was developed. The coupon tests were used to determine the stiffness of the shear connection and to determine the effect of the screw configuration. The results from the coupon tests indicated that the inclined screw configuration provided the largest shear strength compared to the normal, crossed, and nested screw configurations. Based on the results from the coupon tests, bending and vibration (heel drop) tests were conducted on full-scale panel specimens with an inclined screw configuration and with a strong-axis panel orientation. The results from the full-scale panel tests showed that the flexural stiffness and strength of the TCC floor system was consistent and that the composite floor panels have adequate stiffness to minimize transient floor vibrations that are caused by walking for typical span lengths and typical loading. A finite element model of TCC floor systems was developed to simulate TCC floor systems and calibrated with the test data. The simulated response matched the test response fairly well for partially composite single-span and double-span panels. Additional refinement of the model is needed to better match fully composite panels. The research demonstrated that hexagonal-headed self-tapping screws may be effectively used to connect wood and concrete layers in TCC floor systems.
236

Optimal stacking sequence design of stiffened composite panels with cutouts

Nagendra, Somanath 06 June 2008 (has links)
The growing use of high performance composite materials has stimulated interest in the development of optimization procedures for the design of laminates. The design of composite structures against buckling presents two major challenges to the structural analyst and designer. First, the problem of laminate stacking sequence design is discrete in nature which complicates the solution process. Second, many local optima with comparable performance may be found. The present work addresses these challenges by investigating several techniques for designing stiffened composite panels. The specific focus is the minimum weight design of a compression-loaded blade-stiffened composite panel with a centrally located hole subject to stability, minimum gage and strain failure constraints. An efficient linked-plate analysis and design program PASCO is used to predict global response (buckling) of the stiffened panel. Since PASCO cannot model a hole, a finite element program, EAL, is used to model the local hole region and evaluate local strain response in the vicinity of the hole. A sequential approximate design procedure based on ply thicknesses as continuous variables is used to evaluate the relative efficiencies of softskin (designs· with no 0° plies) and stiff-skin designs (designs with 0° plies). The soft-skin design concept, which also has better damage tolerance, is found to be better for stiffened panels from weight and strength considerations. Addressing the discreteness of the problem with the continuous design procedure was found to be cumbersome leading to solutions that were not necessarily optimum. In order to address the limitations of the continuous optimization procedure, two integer programming procedures were investigated. A sequential linear integer programming procedure proved t o be less effective than a genetic algorithm (GA). The GA based discrete design approach provided results which were found to be about 5% lighter than results obtained previously with continuous optimization followed by rounding up of the ply thicknesses. Furthermore, many designs with similar performance were easily obtained, giving a choice of designs for the analyst. The integer programming formulations also permitted easy implementation of additional constraints such as ply contiguity (integer type constraints) that are difficult to enforce in continuous optimization based design procedures. Tests on optimal baseline designs were carried out in parallel with the analytical study to investigate the buckling and failure characteristics of stiffened quasi-static compression loaded panels with holes and to assess the validity of analytical models used for the design of such panels. Results from quasi-static tests indicate that the optimized designs without holes were susceptible to be imperfection sensitive. This is to be expected as the optimization process led to the coincidence of an overall and a local skin buckling modes. Quasi-static tests thus emphasized the need for the optimization process to include additional constraints on the separation of consecutive buckling modes in order to alleviate the tendency of the optimizer to produce designs which may be imperfection sensitive. / Ph. D.
237

Modal interactions in the dynamic response of isotropic and composite plates

Hadian, Mohammad Jafar 12 October 2005 (has links)
Hamilton's principle and a third-order shear-deformation theory are used to derive a set of five coupled partial-differential equations governing the nonlinear response of composite plates. The reduction of these equations by using classical plate theory is discussed and the corresponding partial-differential equations governing both rectangular and circular plates are derived. Generalized Levy-type solutions are obtained for the problem of linear free vibrations and linear stability of shear-deformable cross-ply laminated plates. The governing equations are transformed into a set of first-order linear ordinary-differential equations with constant coefficients. The general solution of these equations is obtained by using the state-space concept. Then, the application of the boundary conditions yields equations for the natural frequencies and critical loads. However, a straightforward application of the state-space concept yields numerically ill-conditioned problems as the plate thickness is reduced. Various methods for overcoming this problem are discussed. An initial-value method with orthonormalization is selected. It is shown that this method not only yields results that are in excellent agreement with the results in the literature, but it also converges fast and gives all the frequencies and buckling loads regardless of the plate thickness. Further It is shown that the application of classical plate theory to thick plates yields inaccurate results. The influence of modal interactions on the response of harmonically excited plates is investigated in detail. The case of a two-to-one autoparametric resonance in shear-deformable composite laminated plates is considered. Four first-order ordinary-differential equations describing the modulation of the amplitudes and phases of the internally resonant modes are derived using the averaged Lagrangian when the higher mode is excited by a primary resonance. The fixed-point solutions are determined using a homotopy algorithm and their stability is analyzed. It is shown that besides the single-mode solution, two-mode solutions exist for a certain range of parameters. It is further shown that in the multi-mode case the lower mode, which is indirectly excited through the internal resonance may dominate the response. For a certain range of parameters, the fixed points lose stability via a Hopf bifurcation, thereby giving rise to limit cycle solutions. It is shown that these limit-cycles undergo a series of period-doubling bifurcations, culminating in chaos. Finally, the case of a combination resonance involving the first three modes of axisymmetric circular plates is studied. The method of multiple scales is used to determine a set of ordinary-differential equations governing the modulation of phases of the modes involved and that the excited mode is not necessarily the dominant one. Furthermore, it is shown that for a choice of parameters the multi-mode response loses stability through a Hopf bifurcation, resulting in periodically or chaotically modulated motions of the plate. / Ph. D.
238

Theory of ultrasonic diffraction by damage developed in thin laminated composites

Hayford, Donald Thomas 28 July 2010 (has links)
This thesis provides a general theory of the diffraction of ultrasonic waves. The theory is then used to find the apparent attenuation which would result if certain damage states (transverse cracks and delaminations) are introduced into a graphite/epoxy laminate through which the ultrasonic wave passes. and [0, ±45, 90]s) is presented which shows changes in the apparent attenuation of, about 1 dB. These changes generally occur at loads which correspond to the range predicted for the formation of the above mentioned damage. Though no exact correlation between theoretical and experimental results is given, the predicted changes in the attenuation for several simple and common damage states are well within the range of experimental values. It is hoped that the technique described herein can be further developed and used to detect the formation and growth of damage in composite specimens in regions not readily visible by conventional techniques. / Master of Science
239

Deformation and fracture in a laminated metallic composite system

Osman, Todd Michael January 1995 (has links)
No description available.
240

Finite element analysis of laminated composite free-edge delamination specimens /

Chang, Cherng-Chi January 1987 (has links)
No description available.

Page generated in 0.1621 seconds