Spelling suggestions: "subject:"aminated materials fracture"" "subject:"aminated materials afracture""
1 |
Delamination growth behavior in cross-ply composites under compressive cyclic (fatigue) loadingPelegri, Assimina A. 08 1900 (has links)
No description available.
|
2 |
An anisotropic model of damage mechanics for inelastic behaviors of fiber reinforced composite laminates /Yang, Fan. January 1992 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1993.
|
3 |
An anisotropic model of damage mechanics for inelastic behaviors of fiber reinforced composite laminates楊帆, Yang, Fan. January 1992 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
|
4 |
A characterization of the fracture behavior of thick, notched, laminated graphite/epoxy compositesHarris, Charles E. January 1983 (has links)
The effect of laminate thickness on the fracture behavior of laminated graphite/epoxy (T300/5208) composites has been studied. The predominantly experimental research program included the study of the [0/±45/90]<sub>ns</sub> and [0/90]<sub>ns</sub> laminates with thicknesses of 8, 32, 64, 96 and 120 plies and the [0/±45]<sub>ns</sub> laminate with thicknesses of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. Fracture toughness was computed using the stress intensity factor results of a finite element stress analysis of each specimen geometry which treated the composite as homogeneous but anisotropic. The development of subcritical damage at the crack tip was studied nondestructively using enhanced x-ray radiography and destructively using the laminate deply technique.
The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the [0/±45/90]<sub>ns</sub> and [0/90]<sub>ns</sub> laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi√in (1043 MP a√mm) and 25 ksi√in (869 √mm) respectively. The fracture toughness of the [0/±45/90]<sub>ns</sub> laminate was independent of crack length at 8 and 120 plies. The fracture of the thin and thick [0/±45/90]<sub>ns</sub> laminates were self-similar, macroscopically. However, the [0/90]<sub>2s</sub> laminate (8 plies) exhibited fracture toughness values that increased sharply as a function of increasing crack size. This was attributed to large axial splits which formed perpendicular to the crack tip in the 0° plies and extended in the direction of applied load. The fracture toughness of the [0/90]<sub>ns</sub> laminate was independent of crack length at 90 plies. The axial splits in the 0° plies of the thicker specimens were confined to the surface and the final fracture was self-similar. For both the [0/±45/90]<sub>ns</sub> and [0/90]<sub>ns</sub> laminates, the center-cracked tension, three-point bend and compact tension specimens gave comparable results.
In contrast to the other two laminates, the fracture toughness of the [0/±45]<sub>ns</sub> laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi√in (1390 MP a√mm) at 30 plies. Fracture toughness was independent of crack size at 6 and 90 plies. The 6 ply specimens failed by an apparent uncoupling mechanism where the two interior -45° plies delaminated from the adjacent +45° plies and failed by matrix splitting parallel to the fibers. The surface 0° plies failed by broken fibers along a +45° line in association with matrix splitting parallel to the fibers in the +45° plies. The thick [0/±45]<sub>ns</sub> laminates exhibited a surface boundary layer in which 45° fiber breaks and splits were evident along with delaminations. However, the interior of the specimens failed in a self-similar manner with fibers in the 0° plies breaking along a line collinear with the starter notch. The compact tension and three-point bend specimens defined a constant fracture toughness at about 15% below the plateau exhibited by the center-cracked tension specimens.
The general toughness parameter model, a strain criterion developed by C. C. Poe, Jr. of NASA Langley, was the only candidate thin laminate failure criterion that was successful in using thin laminate parameters to predict the fracture of thick laminates. The "universal” general toughness parameter value of 1.5 √mm quite closely predicted the fracture of the thick laminates. / Ph. D.
|
5 |
The effect of thickness on the fracture behavior of graphite/bismaleimede laminates with central circular holesLevander, Karen January 1989 (has links)
The influence of thickness and hole radius on the fracture strengths of Narmco V 5245C-G40-600 graphite/bismaleimide laminates was studied. Tests were run on 8 ply, 40 ply, and 80 ply quasi-isotropic laminates of stacking sequence [0/ ± 45/90]. Both unnotched and notched laminates were tested. Unnotched strength was found to be inversely proportional to thickness. Notched strengths were compared to three different failure models based on the stress distribution around the hole.
Damage development around the holes was studied using x-ray radiography. In general, the small holes created more damage than the large holes and the thin laminates were more susceptible to damage than the thick laminates. All notched specimens exhibited matrix cracking in the 90° plies around the hole and vertical splitting in the 0° plies at the edge of the hole. / Master of Science
|
6 |
Nonlinear analysis of laminated composite shells using a micromechanics-based progressive damage modelAverill, Ronald C. 28 July 2008 (has links)
A micromechanics-based model for progressive failure analysis of laminated composite shell structures has been developed and implemented. The model couples a finite element model for nonlinear analysis of laminated shells with a micro mechanics elasticity solution for predicting failure and effective composite properties. The nonlinear laminate theory and finite element model are based on a third-order expansion of displacements through the thickness of the shell, thus allowing for both transverse normal and shearing deformations. The initiation and evolution of damage in the shell is modeled at the constituent (i.e., fiber, matrix, interphase) level using an elasticity solution for quasi-three-dimensional hygro-thermo-mechanical loading of continuous fiberreinforced composites. The model is used to predict failure in laminated composite structures and to study the effects of constituent properties (stiffness and strength) on structural behavior. / Ph. D.
|
7 |
Characterization and Analysis of Damage Progression in Non-Traditional Composite Laminates With Circular HolesTreasurer, Paul James 20 November 2006 (has links)
Carbon Fiber / Epoxy Laminates are increasingly being used in the primary structure of aircraft. To make effective use these materials, it is necessary to consider the ability of a laminate to resist damage, as well as material strength and stiffness. A possible means for improving damage tolerance is the use of non-traditional composite laminates, in which the longitudinal 0 plies are replaced with 5 or 10 plies. The main objectives of this collaborative Georgia Tech / Boeing research was the characterization of these non-traditional laminates, and the determination of appropriate lamina-level analytical techniques that are capable of predicting the changes caused by the use of slightly off-axis longitudinal plies. A quasi-isotropic [45/90/-45/theta/45/90/-45/-theta]s and hard [45/theta/-45/theta/90/45]s lay-up, where theta =0,5 or 10, were tested in open hole tension, filled hole tension, open hole compression, single shear bearing, and unnotched tension. These coupon level tests illustrated the effects of lay-up, notch constraint, and load type on traditional and non-traditional laminates. Die penetrant enhanced in-situ radiography was performed to determine the extent of damage suppression. The use of non-traditional laminates was found to reduce longitudinal ply cracking and delamination, with significant effect on the stress distribution around the notch. The use of non-traditional laminates also resulted in a 15%-20% improvement in bearing strength of the traditional laminates. Several predictive techniques were implemented to evaluate their ability to predict the effect of slight changes in ply orientations. A progressive damage model was written to compare Tsai-Wu, Hashin, and Maximum Stress unnotched strength criterion. Additionally, several semi-empirical failure theories for notched strength prediction were compared with linear and bi-linear cohesive zone models to determine applicability to non-traditional laminates.
|
Page generated in 0.1169 seconds