• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Land Surface Processes In Natural and Artificial Tropical Ecosystems

Rosolem, Rafael January 2010 (has links)
Land Surface Parameterization (LSP) schemes have evolved from simple tipping-bucket models to fully interactive models, including parameterizations which account for exchanges of momentum, energy, mass, and biogeochemistry. As the demand for greater realism has increased, so has the complexity of LSPs which now includes some parameters that may not be universally relevant to all regions of the globe. The performance of LSP schemes depends on the magnitude of structural, data-related (input and output), and parameter uncertainties in the model. Parameter estimation uncertainty can be reduced by calibrating LSPs against measurements available at field sites. Given the multiple outputs of the models, multi-objective optimization approaches are performed. Some of the parameter values used in LSPs have originally obtained from laboratory studies which analyzed plant behavior under a range of conditions in enclosed chambers. The research described in this dissertation takes advantage of currently available data from several eddy covariance flux towers located mainly in the Brazilian Amazon basin to estimate parameter values of a widely-used LSP scheme, version 3 of the Simple Biosphere model (SiB3). Background climatological data was used to assess the representativeness of the data collection period that might have affected model calibration. Variance-based sensitivity analysis was then used to investigate potential structural deficiencies in SiB3 and to reduce the dimensionality of the subsequent optimization by identifying those model parameters that merit calibration. Finally, some structural and conceptual aspects of SiB3 were tested inside Biosphere 2 Tropical Rain Forest biome (B2-TRF) under meteorological conditions that resemble those predicted in future climate scenarios for the Amazon basin.
2

Towards river flow computation at the continental scale

David, Cédric H., 1981- 22 March 2011 (has links)
The work presented in this dissertation informs on river network modeling at large scales using geographic information systems, parallel computing and the latest advancements of atmospheric and land surface modeling. This work is motivated by the availability of a vector-based Geographic Information System dataset that describes the networks of streams and rivers in the United States, and how they are connected. A land surface model called Noah-distributed is used to provide lateral inflow to an NHDPlus river network in the Guadalupe River Basin in Texas. Challenges related to the projection of gridded hydrographic data from a coordinate system to another are investigated. The different representations of the shape of the Earth used in atmospheric science (spherical) and hydrology (spheroidal) can lead to a significant North-South shift on the order of 20 km at mid latitudes. A river network model called RAPID is developed and applied in a four-year study of the Guadalupe and San Antonio River Basins in Texas using the river network of NHDPlus. Gage measurements are used to estimate flow wave celerities in a river network and to assess the quality of RAPID flow computations. The performance of RAPID in a massively-parallel computing environment is tested and further investigation of its scalability is needed before using RAPID at the state or federal level. The replacement by RAPID of the river routing scheme used in SIM-France -- a hydro-meteorological model -- is investigated in a ten-year study of river flow in France. While the formulation of RAPID improves the functionality of SIM-France, the flow simulations are comparable in accuracy to those previously obtained by SIM-France. Sub-basin parameterization was found to improve model results. A single criterion for quantifying the quality of river flow simulations using several river gages globally in a river network is developed that normalizes the square error of modeled flow to allow equal treatment of all gaging stations regardless of the magnitude of flow. The use of this criterion as the cost function for parameter estimation in RAPID allows better results than by increasing the degree of spatial variability in model parameters. / text
3

Assessing and Improving the Representation of Hydrologic Processes in Atmospheric, Ocean, and Land Modeling and Dataset Generation

Brunke, Michael January 2015 (has links)
Water is essential to life on Earth. Since water exists in all three phases (solid, liquid, and gas) on Earth, it exists in various reservoirs throughout the planet that compose the hydrologic cycle, and its movement through these reservoirs requires energy. Thus, water is a key component of the energy balance of the Earth. Despite its importance, its representation in modeling and dataset generation is problematic. Here, the depiction of three phenomena, ocean surface turbulent fluxes, humidity inversions, and groundwater, are assessed, and suggestions for improvements of their representations are made. First, ocean surface turbulent fluxes, including those of moisture (latent heat flux), heat (sensible heat flux), and momentum (wind stress), from reanalysis, satellite-derived, and combined products which are commonly used to produce climatologies and to evaluate global climate models are compared to in situ observations from ship cruises to ascertain which products are the least problematic. The National Aeronautics and Space Administration’s reanalysis, the Modern Era Retrospective Analysis for Research and Applications, is the least problematic for all three fluxes, while a couple of others are the least problematic for only one of the three fluxes. Also, the product biases are disaggregated into uncertainties from the grid cell mean quantities, or bulk variables, used plus the residual uncertainties which includes the algorithm uncertainties due to the parameterization used to relate the small-scale turbulent processes to the large-scale bulk variables. The latter contribute the most to the majority of product latent heat fluxes, while both uncertainties can contribute the most to product sensible heat fluxes and wind stress. Thus, both algorithms and bulk variables need to be improved in ocean surface flux datasets. Second, humidity inversion climatologies in five reanalyses are evaluated. Humidity inversions, similar to its thermal counterpart, are layers in which specific humidity increases with height rather than the usual decrease with height. These are especially persistent in the polar regions in autumn and winter. However, Arctic inversions are the strongest in summer corresponding to the time of year that low cloud cover is the highest. Comparing the reanalysis inversions to radiosonde observations reveals some problems with the realization of humidity inversions in reanalyses including the misrepresentation of the diurnal cycle and of the overproduction of inversions in areas outside the polar regions. Finally, the simulation of groundwater in the Community Land Model (CLM) as used in the Community Earth System Model is made more realistic by including variable soil thickness. Because the bottom of the model soil column is placed at effectively bedrock, the unconfined aquifer model currently used in CLM is removed and a zero bottom water flux is put in place. The removal of the unconfined aquifer allows the simulation of groundwater to not be treated separately from soil moisture. The model is most affected where the number of soil layers is reduced from the original constant 10 layers and largely unaffected where the number of soil layers is increased except for baseflow where the mean annual range in rainfall is large.
4

Quantifying the Sensitivity of Land-Surface Models to Hydrodynamic Stress Limitations on Transpiration

Matheny, Ashley Michelle 05 July 2013 (has links)
No description available.
5

Evaluating Changes in Terrestrial Hydrological Components Due to Climate Change in the Chesapeake Bay Watershed

Modi, Parthkumar Ashishbhai 09 June 2020 (has links)
A mesoscale evaluation is performed to determine the impacts of climate change on terrestrial hydrological components and the Net Irrigation Water Requirement (NIWR) throughout the Chesapeake Bay watershed in the mid-Atlantic region of the United States. The Noah-MP land surface model is calibrated and evaluated against the observed datasets of United States Geological Survey (USGS) streamflow gages, actual evapotranspiration from USGS Simplified Surface Energy Balance (SSEBop) Model and soil moisture from Soil Analysis Climate Network (SCAN). Six best performing Global Climate Models (GCM) based on Multivariate Adaptive Constructed Analogs (MACA) scheme are included for two future scenarios (RCP 4.5 and RCP 8.5), to assess the change in water balance components, change in NIWR for two dominant crops (corn and soybeans) and uncertainty in GCM projections. Using these long-term simulations, the flood inundation maps are developed for future scenarios along the Susquehanna River including the City of Harrisburg in Pennsylvania. The HEC-RAS 2D model is calibrated and evaluated against the high-water marks from major historical flood events and the stage-discharge relationship of the available USGS streamgages. Finally, the impacts of climate change are assessed on flood inundation depth and extent by comparing a 30-yr and 100-yr flood event based on the historical and future (scenario-based) peak discharge estimates at the USGS streamgages. Interestingly, flood inundation extent and severity predicted by the model along the Susquehanna River near Harrisburg is expected to rise in the future climate scenarios due to the greater frequency of extreme events increasing total precipitation. / Master of Science / Climate change is inevitable due to increased greenhouse gas emissions, with impacts varying in space and time significantly throughout the globe. The impacts are strongly driven by the change in precipitation and temperature which affect the control of the movement of water on the surface of the Earth. These changes in the water cycle require an understanding of hydrological components like streamflow, soil moisture, and evapotranspiration. Development of long-term climate models and computational hydrological models (based on mathematical equations and governed by laws of physics) has helped us in understanding this climate variability in space and time. This study performs a long-term simulation using the datasets from six different climate models to analyze the change in terrestrial hydrological components for the entire Chesapeake Bay watershed in the mid-Atlantic region of the United States. The simulations provide an understanding of the interplay between various land surface processes due to climate change and can help determine future water availability and consumption. To illustrate the usefulness of such long-term simulations, the crop water requirement is quantified for the dominant crops in Chesapeake Bay watershed to project water availability and support the development of mitigation strategies. Flood inundation maps are also developed for a section of Susquehanna River near the City of Harrisburg in south-central Pennsylvania using the streamflow from long-term simulations. The flood inundation depth and extent for major flood events such as Tropical Storm Agnes (1972) and Tropical Storm Lee (2011) are compared along the Susquehanna River, which can aid in managing flood operations, reduce the future flood damages and prioritize the mitigation efforts for endangered communities near the City of Harrisburg.
6

Modeling oil palm monoculture and its associated impacts on land-atmosphere carbon, water and energy fluxes in Indonesia

Fan, Yuanchao 25 April 2016 (has links)
In dieser Studie wird ein neues Modul “CLM-Palm” für mehrjährige Nutzpflanzen zur Modellierung einer funktionellen Gruppe (plant functional type) für Ölpalmen im Rahmen des Community Land Models (CLM4.5) entwickelt, um die Auswirkungen der Transformation eines tropischen Waldes in eine Ölpalmenplantage auf die Kohlenstoff-, Wasser- und Energieflüsse zwischen Land und Atmosphäre zu quantifizieren. Um die Morphologie der Ölpalme möglichst detailgetreu darzustellen (das heißt, dass ungefähr 40 Phytomere einen mehrschichtigen Kronenraum formen), wird in dem Modul CLM-Palm eine phänologische und  physiologische Parametrisierung auf Skalen unterhalb des Kronraums eingeführt, so dass jedem Phytomer sein eigenes prognostisches Blattwachstum und seine Erntekapazität zugeordnet wird, während Stamm und Wurzeln gemeinsam genutzt werden. Das Modul CLM-Palm wurde ausschließlich für Ölpalmen getestet, ist aber auch für andere Palmarten (z. B. Kokospalmen) interessant.  Im ersten Kapitel dieser Arbeit werden Hintergrund und Motivation dieser Arbeit vorgestellt. In Kapitel 2 wird die Entwicklung des Haupt- bzw. Kernmodells beschrieben,  inklusive Phänologie und Allokationsfunktionen zur Simulation des Wachstums und des Ertrags der Palme PFT, wodurch die Basis zur Modellierung  der biophysikalischen und biogeochemicalischen Kreisläufe innerhalb dieser Monokultur bereitgestellt wird. Die neuen Parameter für die Phänologie und die Allokation wurden sorgfältig mit Feldmessungen des Blattflächenindexes (LAI), des Ertrags und der Nettoprimärproduktion (NPP) verschiedener Ölpalmenplantagen auf Sumatra (Indonesien) kalibriert und validiert. Die Validierung zeigte die Eignung von CLM-Palm zur adäquaten Vorhersage des mittleren Blattwachstums und Ertrags für verschiedene Standorte und repräsentiert in ausreichendem Maß die signifikante Variabilität bezüglich des Stickstoffs und Alters von Standort zu Standort.  In Kapitel 3 wird die weitere Modellentwicklung und die Implementierung eines Norman-Mehrschichtmodells für den Strahlungstransport vorgestellt, das an den  mehrschichtigen Kronenraum der Ölpalme angepasst ist. Dieses Norman-Mehrschichtmodell des Strahlungstransports zeigte im Vergleich zu dem in CLM4.5 implementierten Standardmodell (basierend auf großen Blättern) bei der Simulation der Licht-Photosynthese-Kurve leichte Verbesserungen und hat  lediglich marginale Vorteile gegenüber dem ebenfalls in CLM4.5 implementierten alternativen statistischen Mehrschichtmodell.  Dennoch liefert das Norman-Modell eine detailliertere und realistischere Repräsentation des Belaubungszustands wie etwa dem dynamischen LAI, der Blattwinkelverteilung in verschiedenen Höhen, und ein ausgewogeneres Profil der absorbierten photosynthetisch aktiven Strahlung (PAR). Die Validierung mit Hilfe der Eddy-Kovarianz Flussdaten zeigte die Stärke von CLM-Palm bei der Simulation der Kohlenstoffflüsse, offenbarte aber auch Abweichungen in der simulierten Evapotranspiration (ET), dem sensiblen und dem latenten Wärmefluss (H und LE). Eine Reihe von hydrologischen Messungen im Kronenraum wird in Kapitel 4 beschrieben. Dies beinhaltet eine Adaption des in CLM4.5 eingebauten Standardmodells für Niederschlag, Interzeption und Speicherfunktionen für die speziellen Merkmale eines Ölpalmen-Kronenraums. Die überarbeitete Hydrologie des Kronenraums behob die Probleme bei der Simulation der Wasserflüsse (ET und Transpiration im Kronenraum) und verbesserte die Energieaufteilung zwischen H und LE. Kapitel 5 dokumentiert die Implementierung eines neuen dynamischen Modells für Stickstoff (nitrogen, N) in CLM-Palm zur Verbesserung der Simulation der C- und N-Dynamik, insbesondere mit Bezug auf den N-Düngeeffekte in landwirtschaftlich genutzten Systemen. Das dynamische N-Modell durchbricht die Limitierung des Standardmodells in CLM4.5, mit fixierter C-N-Stöchiometrie und erlaubt die Variation des C:N-Verhältnisses in lebendem Gewebe in Abhängigkeit der N-Verfügbarkeit und dem N-Bedarf der Pflanze.  Eine Reihe von Tests bezüglich der Düngung zeigte beispielhaft die Vorteile des dynamischen N-Modells, wie zum Beispiel die Verbesserung des Netto-Ökosystemaustauschs (net ecosystem exchange, NEE), ein realistischeres C:N-Verhältnis im Blatt, eine verbesserte Repräsentation der Effizienz des Stickstoffeinsatzes (nitrogen-use efficiency, NUE), sowie der Effekte von Düngung auf Wachstum und Ertrag. Abschließend wird in Kapitel 6 eine Anwendungsstudie gezeigt, in der die zentralen Modellentwicklungen aus den vorangegangenen Kapiteln verwendet werden. Eine junge und eine  erntereife Ölpalmenplantage sowie ein Primärregenwald wurden simuliert und verglichen. Sie wiesen klare Unterschiede in den C-Flüssen und in den biophysikalischen Merkmalen (z.B. ET und Oberflächentemperatur) auf. Ölpalmenplantagen können durch Wachstumsentwicklung (im Alter von etwa 4 Jahren)  ebenso hohe und darüber hinausgehende C-Assimilation und Wassernutzungsraten erreichen wie Regenwälder, haben jedoch im Allgemeinen eine höhere Oberflächentemperatur als eine bewaldete Fläche – dies gilt auch für erntereife Plantagen. Eine Simulation des Übergangs, die zwei Rotationsperioden mit Neubepflanzungen alle 25 Jahre umspannt, zeigte dass der Anbau von Ölpalmen auf längeren Zeitskalen lediglich in etwa die Hälfte des ursprünglichen C-Speichers der bewaldeten Fläche vor dem Kahlschlag  rückspeichern kann. Das im Boden gespeicherte C nimmt in einer bewirtschafteten Plantage aufgrund des begrenzten Streurücklaufs langsam und graduell ab. Insgesamt reduziert die Umwandlung eines Regenwaldes in eine Ölpalmenplantage die langfristigen C-Speicher und die Kapazität der Fläche zur C-Sequestrierung und trägt potentiell zur Erwärmung der Landoberfläche bei – trotz des schnellen Wachstums und der hohen C-Assimilationsrate einer stark gedüngten Plantage. Zur Einschätzung der regionalen und globalen Effekte der Ausbreitung der Kultivierung von Ölpalmen auf die Austauschprozesse zwischen Land und Atmosphäre und auf das Klima ist es notwendig eine Upscaling-Studie durchzuführen.
7

Deep Percolation in Arid Piedmont Watersheds and Its Sensitivity to Ecosystem Change

January 2017 (has links)
abstract: Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2017
8

Development of a Novel Plant-Hydrodynamic Approach for Modeling of Forest Transpiration during Drought and Disturbance

Matheny, Ashley Michelle 28 October 2016 (has links)
No description available.

Page generated in 0.1075 seconds