• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examining the Effects of Climate Change and Urban Development on Water Demand: A Multi-Scale Analysis of Future Water Demand in Hillsboro, Oregon

House-Peters, Lily 01 January 2010 (has links)
In the Portland, Oregon, metropolitan area, suburban cities such as Hillsboro are projected to grow as people seek affordable housing near a rapidly growing metropolis. This thesis examines the combined impact of'c1imate change and urban development on both neighborhood and municipal scale residential water demand in Hillsboro, Oregon. I use two models, a surface energy balance model, Local-scale Urban Meteorological Parameterization Scheme (LUMPS), and a system dynamics model, CCDomestic, to investigate changes in residential water demand in the 2040s at two distinct spatial scales, the neighborhood and the municipality. I calibrate and validate each model to the reference period and then simulate the future (2030-2059) under three statistically downscaled global climate models and two urban development scenarios. The findings of this study indicate that climate change and urban development will not evenly affect water consumption in neighborhoods across a city. Instead, the current land cover and residential density of a neighborhood exert an important influence on the response. Heavily vegetated neighborhoods exhibit large increases in water demand under urban sprawl and warming scenarios, while neighborhoods dominated by impervious surfaces decrease water consumption under sprawl scenarios and show little change in water consumption under combined sprawl and warming scenarios. At the municipal scale findings suggest that water demand is highly sensitive to urban design and management and that the combination of urban densification and water conservation regulations could mitigate increases in water consumption from population growth and climate change.

Page generated in 0.0546 seconds