Spelling suggestions: "subject:"hand vehicle"" "subject:"land vehicle""
1 |
Improved Land Vehicle Navigation and GPS Integer Ambiguity Resolution Using Enhanced Reduced-IMU/GPS IntegrationKaramat, Tashfeen 24 June 2014 (has links)
Land vehicle navigation is primarily dependent upon the Global Positioning System (GPS) which provides accurate navigation in open sky. However, in urban and rural canyons GPS accuracy degrades considerably. To help GPS in such scenarios, it is often integrated with inexpensive inertial sensors. Such sensors have complex stochastic errors which are difficult to mitigate. In the presence of speed measurements from land vehicle, a reduced number of inertial sensors can be used which improve performance and termed as the Reduced Inertial Sensor System (RISS).
Existing low-cost RISS/GPS integrated algorithms have limited accuracy due to use of approximations in error models and employment of a Linearized Kalman Filter (LKF). This research developed an enhanced error model for RISS which was integrated with GPS using an Extended Kalman Filter (EKF) for improved navigation of land vehicles. The proposed system was tested on several road experiments and the results confirmed the sustainable performance of the system during long GPS outages.
To further increase the accuracy, Differential GPS (DGPS) is employed where carrier phase measurements are typically used. This requires resolution of Integer Ambiguity (IA) that comes at computational and time expense. This research uses pseudorange measurements for DGPS which mitigate large biases due to atmospheric errors and obviate the resolution of IA. These measurements are integrated with the enhanced RISS to filter increased noise and help GPS during signal blockages.
The performance of the proposed system was compared with two other algorithms employing undifferenced GPS measurements where atmospheric effects are mitigated using either the Klobuchar model or dual frequency receivers. The proposed system performed better than both the algorithms in positional accuracy, multipath and GPS outages.
This research further explored the reduction of Time-to-Fix Ambiguities (TTFA) for land vehicle navigation. To reduce the TTFA through inertial aiding, previous research used high-end Inertial Measurement Units (IMUs). This research uses MEMS grade IMU by integrating the enhanced RISS with carrier phase measurements using EKF. This algorithm was also tested on three road trajectories and it was shown that this integration helps reduce the TTFA as compared to the GPS-only case when fewer satellites are visible. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2014-06-23 11:30:58.036
|
2 |
Integrated position and attitude determination for augmented reality systemsScott-Young, Stephen Unknown Date (has links) (PDF)
One of the most challenging tasks for augmented reality systems is that of position and attitude determination in outdoor unprepared environments. Augmented reality, a technology that overlays digital information with views of the real world, requires accurate and precise position and attitude determination to operate effectively. For small (often indoor) areas, careful preparation of the environment can allow for augmented reality systems to work successfully. In large outdoor environments, however, such preparation is often impractical, time-consuming and costly. This thesis aims to investigate the development of a position and attitude determination component for augmented reality systems capable of operation in outdoor unprepared environments. The hypothesis tested in this investigation is that the integration of Global Positioning System (GPS), Dead Reckoning (DR) and map matching techniques enables the continuous and accurate real-time visual alignment of three-dimensional data with objects in the perspective view of a user operating in outdoor unprepared environments.
|
3 |
Modelling And Simulation Of A Wheeled Land VehicleLafci, Alp 01 December 2009 (has links) (PDF)
Land transportation is the main form of transportation around the world. Since the invention of the car land transportation changed drastically. As the cars took a solid part in human lives with the developments in electronics and robotics unmanned land vehicles are the future of both commercial and military land transportation. Today armies want unmanned land vehicles to provide logistical support to the units near threat zones and commercial firms want them to deliver goods more reliably and with less expense.
In this thesis, mainly, a 6DoF dynamical model for a four wheeled land vehicle is developed and an autopilot design is presented using PID techniques. For dynamical modeling of the vehicle internal combustion engines, transmissions, tires, suspensions, aero dynamical drag forces and brakes are studied and the model is tested over some scenarios for evaluating its performance.
|
4 |
Nonlinear Modeling of Inertial Errors by Fast Orthogonal Search Algorithm for Low Cost Vehicular NavigationSHEN, ZHI 23 January 2012 (has links)
Due to their complementary characteristics, Global Positioning System (GPS) is usually integrated with standalone navigation devices like odometers and inertial measurement units (IMU). Recently, intensive research has focused on utilizing Micro-Electro-Mechanical-System (MEMS) grade inertial sensors in the integration because of their low cost. In this study, a reduced inertial sensor system (RISS) is considered. It comprises a MEMS grade single axis gyroscope, the vehicle built-in odometer, and two optional MEMS grade accelerometers. Estimation technique is needed to allow the data fusion of RISS and GPS. With adequate accuracy, Kalman filter (KF) fulfills this requirement if high-end inertial sensors are used. However, due to the inherent error characteristics of MEMS devices, MEMS-based RISS suffers from the non-stationary stochastic sensor errors and nonlinear inertial errors, which cannot be suppressed by KF alone. To solve the problem, Fast Orthogonal Search (FOS), a nonlinear system identification algorithm, is suggested in this research for modeling higher order RISS errors. FOS algorithm has the ability to figure out the system nonlinearity with a tolerance of arbitrary stochastic system noise. Its modeling results can then be used to predict the system dynamics. Motivated by the above merits, a KF/FOS module is proposed. By handling both linear and nonlinear RISS errors, this module targets substantial enhancement of positioning accuracy.
To examine the effectiveness of the proposed technique, KF/FOS module is applied on RISS with GPS in a land vehicle for several road test trajectories. Its performance is compared to KF-only method, both assessed with respect to a high-end reference. To evaluate navigation algorithm in real-time vehicle application, a multi-sensor data logger is designed in this research to collect online RISS/GPS data. KF/FOS module is transplanted on an embedded digital signal processor as well. Both the off-line and online results confirm that KF/FOS module outperforms KF-only approach in positioning accuracy. They also demonstrate reliable real-time performance. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2012-01-22 01:26:11.477
|
5 |
Advanced Nonlinear Techniques for Low Cost Land Vehicle NavigationGeorgy, Jacques 27 July 2010 (has links)
Present land vehicle positioning and navigation relies mostly on the Global Positioning System (GPS). However, in urban canyons, tunnels, and other GPS-denied environments, the GPS positioning solution may be interrupted or suffer from deterioration in accuracy due to satellite signal blockage, poor satellite geometry or multipath effects. In order to achieve continuous positioning services, GPS is augmented with complementary systems capable of providing additional sources of positioning information, like inertial navigation systems (INS). Kalman filtering (KF) is traditionally used to provide integration of both INS and GPS utilizing linearized dynamic system and measurement models. Targeting low cost solution for land vehicles, Micro-Electro-Mechanical Systems (MEMS) based inertial sensors are used. Due to the inherent errors of MEMS inertial sensors and their stochastic nature, which is difficult to model, KF has limited capabilities in providing accurate positioning in challenging GPS environments.
This research aims at developing reliable integrated navigation system capable of demonstrating accurate positioning during long periods of challenging GPS environments.
Towards achieving this goal, Mixture Particle filtering (MPF) is suggested in this research as a nonlinear filtering technique for INS/GPS integration to accommodate arbitrary inertial sensor characteristics, motion dynamics and noise distributions. Since PF can accommodate nonlinear models, this research develops total-state nonlinear system and measurement models without any linearization, thus enabling reliable integrated navigation and mitigating one of the major drawbacks of KF. Exploiting the capabilities of PF, Parallel Cascade Identification (PCI), which is a nonlinear system identification technique, is used to obtain efficient stochastic models for inertial sensors instead of the currently utilized linear models, which are not adequate for MEMS-based sensors. Moreover, this research proposes a method to update the stochastic bias drift of inertial sensors from GPS data when the GPS signal is adequately received. Furthermore, a technique for automatic detection of GPS degraded performance is developed and led to improving the performance in urban canyons.
The performance is examined using several road test experiments conducted in downtown cores to verify the adequacy and the benefits of the methods suggested. The results obtained demonstrate the superior performance of the proposed methods over conventional techniques. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-07-23 20:27:02.12
|
6 |
Localization For AutonomousDriving using Statistical Filtering : A GPS aided navigation approach with EKF and UKF / Lokalisering för autonom körning med statistiskfiltrering : En GPS-stödd navigeringsmetod med EKF och UKFSingh, Devrat January 2022 (has links)
A critical requirement for safe autonomous driving is to have an accurate state estimate of thevehicle. One of the most ubiquitous yet reliable ways for this task is through the integrationof the onboard Inertial Navigation System (INS) and the Global Navigation Satellite System(GNSS). This integration can further be assisted through fusion of information from otheronboard sensors. On top of that, a ground vehicle enforces its own set of rules, through non-holonomic constraints, which along with other vehicle dynamics can aid the state estimation.In this project, a sequential probabilistic inference approach has been followed, that fusesthe high frequency, short term accurate INS estimates, with low frequency, drift free GPSobservations. The fusion of GPS and IMU has been sought through a modular asynchronousloosely coupled framework, capable of augmenting additional observation sources to facilitatethe state estimation and tracking process. Besides GPS and IMU, the applied strategy makesuse of wheel speed sensor measurements, nonholonomic constraints and online estimationof IMU sensor biases as well wheel speed scalling factor. Theses augmentations have beenshown to increase the robustness of the localization module, under periods of GPS outage.The Extended Kalman Filter (EKF) has seen extensive usage for such sensor fusion tasks,however, the performance can be limited due to the propagation of the covariance throughlinearization of the underlying non-linear model. The Unscented Kalman Filter (UKF) avoidsthe issue of linearization based on jacobians. Instead, it uses a carefully chosen set ofsample points in order to accurately map the probability distribution. Correspondingly, thesurrounding literature also indicates towards the UKF out performing EKF in such tasks.Therefore, the present thesis also seeks to evaluate these claims.The EKF and SRUKF (Square Root UKF) instances of the developed algorithm have beentested on real sensor logs, recorded from a Scania test vehicle. Under no GPS outage situation,the implemented localization algorithm performs within a position RMSE of 60cm.The robustness of the localization algorithm, to GPS outages, is evaluated by simulating0-90% lengths of GPS unavailability, during the estimation process. Additionally, to unfoldthe impact of parameters, the individual modules within the suggested framework wereisolated and analysed with respect to their contribution towards the algorithm’s localizationperformance.Out of all, the online estimation of IMU sensor biases proved to be critical for increasingthe robustness of the suggested localization algorithm to GPS shortage, especially for the EKF.In terms of the distinction, both the EKF and the SRUKF performed to similar capabilities,however, the UKF showed better results for higher levels of GPS cuts. / Ett kritiskt krav för säker autonom körning är att ha en korrekt tillståndsuppskattning avfordonet. Ett av de mest förekommande men ändå tillförlitliga sätten för denna uppgift ärgenom integrationen av det inbyggda tröghetsnavigationssystemet (INS) och med Satellitnavi-gation (GNSS). Denna integration kan ytterligare underlättas genom sammanslagning avinformation från andra sensorer ombord. Utöver det upprätthåller ett markfordon sin egenuppsättning regler, genom icke-holonomiska begränsningar, som tillsammans med annanfordonsdynamik kan hjälpa till vid tillståndsuppskattningen.I detta projekt har en sekventiell probabilistisk slutledning följts, som sammansmälterde högfrekventa, kortsiktiga exakta INS-uppskattningarna, med lågfrekventa, driftfria GPS-observationer. Sammanslagningen av GPS och IMU har sökts genom ett modulärt asynkrontlöst kopplat ramverk, som kan utökas med ytterligare observationskällor för att underlättatillståndsuppskattningen och spårningsprocessen. Förutom GPS och IMU använder dentillämpade strategin mätningar av hjulhastighetssensorer, icke-holonomiska begränsningaroch onlineuppskattning av IMU-sensorbias samt hjulhastighetsskalningsfaktor. Dessa tillägghar visat sig öka robustheten hos lokaliseringsmodulen under perioder utan GPS-signal.Extended Kalman Filter (EKF) har sett omfattande användning för sådana sensorfusionsup-pgifter, men prestandan kan begränsas på grund av spridningen av kovariansen genomlinearisering av den underliggande icke-linjära modellen. Unscented Kalman Filter (UKF)undviker frågan om linearisering baserad på jacobianer. Istället använder den en noggrantutvald uppsättning provpunkter för att korrekt kartlägga sannolikhetsfördelningen. På motsva-rande sätt indikerar den omgivande litteraturen också mot UKF att utföra EKF i sådanauppgifter. Därför försöker denna avhandling också utvärdera dessa påståenden.EKF- och SRUKF-instanserna (Square Root UKF) av den utvecklade algoritmen hartestats på sensorloggar, inspelade från ett Scania-testfordon. Utan GPS-avbrott presterar denimplementerade lokaliseringsalgoritmen inom en position RMSE på 60 cm.Robustheten hos lokaliseringsalgoritmen, vid GPS-avbrott, utvärderas genom att simulera0-90% längder av GPS-otillgänglighet under uppskattningsprocessen. Utöver det har deenskilda modulerna inom det föreslagna ramverket isolerats och analyserats med avseendepå deras bidrag till algoritmens lokaliseringsprestanda.Av allt visade sig onlineuppskattningen av IMU-sensorbiaser vara avgörande för att ökarobustheten hos den föreslagna lokaliseringsalgoritmen mot GPS-brist, särskilt för EKF. Närdet gäller distinktionen presterade både EKF och SRUKF med liknande förmåga, men UKFvisade bättre resultat vid längre perioder utan GPS-signal.
|
Page generated in 0.0657 seconds