Spelling suggestions: "subject:"androgener theory"" "subject:"andwiener theory""
1 |
Generalizations of the Landau-Zener theory in the physics of nanoscale systemsSinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
|
2 |
Generalizations of the Landau-Zener theory in the physics of nanoscale systemsSinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
|
3 |
Landau-Zener transitions in noisy environment and many-body systemsSun, Deqiang 16 January 2010 (has links)
This dissertation discusses the Landau-Zener (LZ) theory and its application in
noisy environments and in many-body systems. The first project considers the effect
of fast quantum noise on LZ transitions. There are two important time intervals
separated by the characteristic LZ time. For each interval we derive and solve the
evolution equation, and match the solutions at the boundaries to get a complete
solution. Outside the LZ time interval, we derive the master equation, which differs
from the classical equation by a quantum commutation term. Inside the LZ time
interval, the mixed longitudinal-transverse noise correlation renormalizes the LZ gap
and the system evolves according to the renormalized LZ gap. In the extreme quantum
regime at zero temperature our theory gives a beautiful result which coincides
with that of other authors. Our initial attempts to solve two experimental puzzles
- an isotope effect and the quantized hysteresis curve of a single molecular magnet -
are also discussed.
The second project considers an ultracold dilute Fermi gas in a magnetic field
sweeping across the broad Feshbach resonance. The broad resonance condition allows
us to use the single mode approximation and to neglect the energy dispersion of the
fermions. We then propose the Global Spin Model Hamiltonian, whose ground state
we solve exactly, which yields the static limit properties of the BEC-BCS crossover. We also study the dynamics of the Global Spin Model by converting it to a LZ
problem. The resulting molecular production from the initial fermions is described
by a LZ-like formula with a strongly renormalized LZ gap that is independent of the
initial fermion density. We predict that molecular production during a field-sweep
strongly depends on the initial value of magnetic field. We predict that in the inverse
process of molecular dissociation, immediately after the sweeping stops there appear
Cooper pairs with parallel electronic spins and opposite momenta.
|
Page generated in 0.0402 seconds