• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of digesta passage in rabbits and ringtail possums using markers and models

Herron, Fiona Michelle January 2002 (has links)
The common ringtail possum (Pseudocheirus peregrinus), a member of the family Pseudocheiridae, is an arboreal folivorous marsupial that feeds predominantly on Eucalyptus foliage. Contrary to the expectation that small body size would inhibit utilisation of a diet containing such high levels of lignified fibre because of relatively low gut volume to body mass ratios and relatively high mass-specific metabolic rates and nutrient requirements (Hume 1999), the ringtail possum is able to survive solely on a diet of Eucalyptus foliage. The rabbit (Oryctolagus cuniculus) is a terrestrial herbivore and is a member of the family Leporidae that feeds predominantly on grasses. The rabbit was proposed as a digesta flow model for the ringtail possum since both are caecotrophic (periodically re-ingest caecal contents) and both are proposed to exhibit a colonic separation mechanism (CSM) where fluids and small, easily digested particles are preferentially returned to the caecum. The rabbit is of value for the modelling process since it is more accessible for experimental manipulation than the ringtail possum. This study investigated a proposal to use digesta passage through the gastrointestinal tract (GIT) of the rabbit as a model of digesta passage for the ringtail possum on the basis that both are caecotrophic caecum fermenters. A number of potential problems were identified with this proposal and investigation of these problems formed the basis for the research described in this thesis. Two main areas were identified as being potentially problematic: 1) fundamental flaws with the particulate markers used in digesta rate of passage studies; and 2) differences in animal behaviour and natural diet between the two subject species which suggested different digestive strategies and hence different patterns of digesta flow through the GIT. The proposed digesta passage markers were lanthanide metals (Dy, Tm, Eu and Yb) attached to either fibrous particles (1200 - 600�m) or formalin-fixed rumen bacteria (20 � 0.2�m). These markers were shown to not be of the assumed size classes and the extent of lanthanide metal binding differed between the four metals used. An effect due to method of dosing was also observed. The findings of marker inconsistencies caused major limitation to model development and further research is necessary to clarify these markers. The proposal to use digesta flow in the rabbit GIT as a model for digesta flow in the ringtail possum was shown to be idealistic due to the differences in anatomy and behaviour observed between the two herbivores. Laboratory observations, time series analysis and compartmental modelling confirmed the differences between the animals. This study showed: 1) the GIT of the rabbit was more complex both anatomically and functionally than that of the ringtail possum; 2) behaviour affecting digesta passage of the rabbit and ringtail were different and; 3) compartmental models confirmed the anatomical and behavioural findings. Digesta passage in the rabbit could not be modelled mathematically using data on digesta passage due to complexities of the system. In contrast, a basic model was constructed for digesta passage in the ringtail possum. On the basis of these findings, the research hypothesis "that digesta passage in rabbits is similar to that in ringtail possums" was rejected.
2

A study of digesta passage in rabbits and ringtail possums using markers and models

Herron, Fiona Michelle January 2002 (has links)
The common ringtail possum (Pseudocheirus peregrinus), a member of the family Pseudocheiridae, is an arboreal folivorous marsupial that feeds predominantly on Eucalyptus foliage. Contrary to the expectation that small body size would inhibit utilisation of a diet containing such high levels of lignified fibre because of relatively low gut volume to body mass ratios and relatively high mass-specific metabolic rates and nutrient requirements (Hume 1999), the ringtail possum is able to survive solely on a diet of Eucalyptus foliage. The rabbit (Oryctolagus cuniculus) is a terrestrial herbivore and is a member of the family Leporidae that feeds predominantly on grasses. The rabbit was proposed as a digesta flow model for the ringtail possum since both are caecotrophic (periodically re-ingest caecal contents) and both are proposed to exhibit a colonic separation mechanism (CSM) where fluids and small, easily digested particles are preferentially returned to the caecum. The rabbit is of value for the modelling process since it is more accessible for experimental manipulation than the ringtail possum. This study investigated a proposal to use digesta passage through the gastrointestinal tract (GIT) of the rabbit as a model of digesta passage for the ringtail possum on the basis that both are caecotrophic caecum fermenters. A number of potential problems were identified with this proposal and investigation of these problems formed the basis for the research described in this thesis. Two main areas were identified as being potentially problematic: 1) fundamental flaws with the particulate markers used in digesta rate of passage studies; and 2) differences in animal behaviour and natural diet between the two subject species which suggested different digestive strategies and hence different patterns of digesta flow through the GIT. The proposed digesta passage markers were lanthanide metals (Dy, Tm, Eu and Yb) attached to either fibrous particles (1200 - 600�m) or formalin-fixed rumen bacteria (20 � 0.2�m). These markers were shown to not be of the assumed size classes and the extent of lanthanide metal binding differed between the four metals used. An effect due to method of dosing was also observed. The findings of marker inconsistencies caused major limitation to model development and further research is necessary to clarify these markers. The proposal to use digesta flow in the rabbit GIT as a model for digesta flow in the ringtail possum was shown to be idealistic due to the differences in anatomy and behaviour observed between the two herbivores. Laboratory observations, time series analysis and compartmental modelling confirmed the differences between the animals. This study showed: 1) the GIT of the rabbit was more complex both anatomically and functionally than that of the ringtail possum; 2) behaviour affecting digesta passage of the rabbit and ringtail were different and; 3) compartmental models confirmed the anatomical and behavioural findings. Digesta passage in the rabbit could not be modelled mathematically using data on digesta passage due to complexities of the system. In contrast, a basic model was constructed for digesta passage in the ringtail possum. On the basis of these findings, the research hypothesis "that digesta passage in rabbits is similar to that in ringtail possums" was rejected.
3

High-pressure high-temperature behaviour of the lanthanide metals

Munro, Keith Alistair January 2017 (has links)
The high-pressure behaviour of the lanthanide series of metals has been the subject of study since the work of Percy Bridgman in the 1940s. Differences in said behaviour between the different lanthanide metals are attributed to the increasing occupation of the 4f electron shell as Z increases. Upon compression, or as Z decreases, the trivalent lanthanides (La to Lu, excluding Eu and Yb) undergo a common phase transformation sequence through various close packed structures: hcp → Sm-type (the structure adopted by samarium at ambient conditions) → dhcp → fcc → distorted fcc (d-fcc). Upon further compression, the lanthanide metals experience a first order transition to a "volume collapsed" phase. Many studies have focused on the low-Z members of the series, since the various phase transitions occur at much lower pressure where it is comparatively easy to collect high quality data. By contrast, the other members of the series have received comparability little attention, and there are even fewer reports of the structural behaviour of the lanthanide metals at high pressure and high temperature. This thesis contains the results of angle-dispersive x-ray powder diffraction experiments at high pressure and high temperature of the various members of the lanthanide metals. Ce has been the subject of many previous studies, but a systematic x-ray diffraction study of the fcc/d-fcc phase boundary has never been attempted. Furthermore, the location in P-T space of the high temperature fcc/bct/d-fcc triple point has only been inferred, due to the lack of data on the fcc/bct phase boundary at high temperature. The high-pressure high-temperature phase diagram of Ce is presented and discussed. La is unique amongst the lanthanide metals due to its empty 4f shell at ambient conditions. Despite this, La undergoes the common lanthanide transformation sequence up to the d-fcc phase, after which it undergoes a re-entrant transition back to the fcc phase at 60 GPa. The diffraction peaks of d-fcc La are shown in this thesis to undergo changes in intensity upon compression, indicating a transformation to the oI 16 structure found in Pr. La is one of the few elements whose behaviour has been unknown above 100 GPa, and results of La's structural behaviour upon compression to 280 GPa are presented and discussed. At 76 GPa, La begins a transition from the fcc phase to a new phase with the bct structure. Finally, the d-fcc→fcc re-entrant phase transition has been determined at various temperatures, and the d-fcc stability region has been mapped out. Finally, x-ray diffraction experiments were performed on Gd up to 100 GPa and ~700 K, to determine the structure of the d-fcc phase and the "volume collapsed" phase. While d-fcc Gd does not undergo pressure-induced changes similar to its low Z brethren, the d-fcc Gd remains stable up to 41 GPa at 700 K, putting a constraint on the d-fcc stability region. The data collected on Gd's "volume collapsed" phase cannot be fitted to the currently accepted mC4 structure. This has implications for our understanding of the lanthanide series as a whole, since most of of the heavier members, and some of the lighter lanthanides, are reported to adopt the mC4 structure.
4

Fluorescence Studies of Metal Organic Frameworks Based on the TATB Ligand, Synthesis and Characterization of an Fe4S4 Analogue and Organic Radicals

Bunkowske, Beatrice A. 12 December 2011 (has links)
No description available.

Page generated in 0.046 seconds