• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Laplacian and fractional Laplacian in exterior domains, and applications to the dissipative quasi-geostrophic equation

Unknown Date (has links)
In this work, we develop an extension of the generalized Fourier transform for exterior domains due to T. Ikebe and A. Ramm for all dimensions n>2 to study the Laplacian, and fractional Laplacian operators in such a domain. Using the harmonic extension approach due to L. Caffarelli and L. Silvestre, we can obtain a localized version of the operator, so that it is precisely the square root of the Laplacian as a self-adjoint operator in L2 with DIrichlet boundary conditions. In turn, this allowed us to obtain a maximum principle for solutions of the dissipative two-dimensional quasi-geostrophic equation the exterior domain, which we apply to prove decay results using an adaptation of the Fourier Splitting method of M.E. Schonbek. / by Leonardo Kosloff. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
2

Content-adaptive graph-based methods for image analysis and processing.

Noel, Guillaume Pierre Alexandre. January 2011 (has links)
D. Tech. Electrical Engineering. / In the past few years, mesh representation of images has attracted a lot of research interest due to its wide area of applications in image processing. Mesh representation showed encouraging results for image segmentation, reconstruction and compression. The present work revisits the Laplacian mesh smoothing, a technique for fairing surfaces, almost exclusively applied to 3D meshes. The report is also based on the idea that while sampling points in an image are distributed uniformly, the information in an image is not following a uniform distribution. Instead of filtering the gray levels of the image, the proposed method, called grid smoothing, filter the coordinates of the sampling points of the image.
3

Smoothness Energies in Geometry Processing

Stein, Oded January 2020 (has links)
This thesis presents an analysis of several smoothness energies (also called smoothing energies) in geometry processing, and introduces new methods as well as a mathematical proof of correctness and convergence for a well-established method. Geometry processing deals with the acquisition, modification, and output (be it on a screen, in virtual reality, or via fabrication and manufacturing) of complex geometric objects and data. It is closely related to computer graphics, but is also used by many other fields that employ applied mathematics in the context of geometry. The popular Laplacian energy is a smoothness energy that quantifies smoothness and that is closely related to the biharmonic equation (which gives it desirable properties). Minimizers of the Laplacian energy solve the biharmonic equation. This thesis provides a proof of correctness and convergence for a very popular discretization method for the biharmonic equation with zero Dirichlet and Neumann boundary conditions, the piecewise linear Lagrangian mixed finite element method. The same approach also discretizes the Laplacian energy. Such a proof has existed for flat surfaces for a long time, but there exists no such proof for the curved surfaces that are needed to represent the complicated geometries used in geometry processing. This proof will improve the usefulness of this discretization for the Laplacian energy. In this thesis, the novel Hessian energy for curved surfaces is introduced, which also quantifies the smoothness of a functions, and whose minimizers solve the biharmonic equation. This Hessian energy has natural boundary conditions that allow the construction of functions that are not significantly biased by the geometry and presence of boundaries in the domain (unlike the Laplacian energy with zero Neumann boundary conditions), while still conforming to constraints informed by the application. This is useful in any situation where the boundary of the domain is not an integral part of the problem itself, but just an artifact of data representation---be it, because of artifacts created by an imprecise scan of the surface, because information is missing outside of a certain region, or because the application simply demands a result that should not depend on the geometry of the boundary. Novel discretizations of this energy are also introduced and analyzed. This thesis also presents the new developability energy, which quantifies a different kind of smoothness than the Laplacian and Hessian energies: how easy is it to unfold a surface so that it lies flat on the plane without any distortion (surfaces for which this is possible are called developable surfaces). Developable surfaces are interesting, as they can be easily constructed from cheap material such as paper and plywood, or manufactured with methods such as 5-axis CNC milling. A novel definition of developability for discrete triangle meshes, as well as a variety of discrete developability energies are also introduced and applied to problems such as approximation of a surface by a piecewise developable surface, and the design and fabrication of piecewise developable surfaces. This will enable users to more easily take advantages of these cheap and quick fabrication methods. The novel methods, algorithms and the mathematical proof introduced in this thesis will be useful in many applications and fields, including numerical analysis of elliptic partial differential equations, geometry processing of triangle meshes, character animation, data denoising, data smoothing, scattered data interpolation, fabrication from simple materials, computer-controlled fabrication, and more.
4

Towards on-line domain-independent big data learning : novel theories and applications

Malik, Zeeshan January 2015 (has links)
Feature extraction is an extremely important pre-processing step to pattern recognition, and machine learning problems. This thesis highlights how one can best extract features from the data in an exhaustively online and purely adaptive manner. The solution to this problem is given for both labeled and unlabeled datasets, by presenting a number of novel on-line learning approaches. Specifically, the differential equation method for solving the generalized eigenvalue problem is used to derive a number of novel machine learning and feature extraction algorithms. The incremental eigen-solution method is used to derive a novel incremental extension of linear discriminant analysis (LDA). Further the proposed incremental version is combined with extreme learning machine (ELM) in which the ELM is used as a preprocessor before learning. In this first key contribution, the dynamic random expansion characteristic of ELM is combined with the proposed incremental LDA technique, and shown to offer a significant improvement in maximizing the discrimination between points in two different classes, while minimizing the distance within each class, in comparison with other standard state-of-the-art incremental and batch techniques. In the second contribution, the differential equation method for solving the generalized eigenvalue problem is used to derive a novel state-of-the-art purely incremental version of slow feature analysis (SLA) algorithm, termed the generalized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further the time series expansion of echo state network (ESN) and radial basis functions (EBF) are used as a pre-processor before learning. In addition, the higher order derivatives are used as a smoothing constraint in the output signal. Finally, an online extension of the generalized eigenvalue problem, derived from James Stone’s criterion, is tested, evaluated and compared with the standard batch version of the slow feature analysis technique, to demonstrate its comparative effectiveness. In the third contribution, light-weight extensions of the statistical technique known as canonical correlation analysis (CCA) for both twinned and multiple data streams, are derived by using the same existing method of solving the generalized eigenvalue problem. Further the proposed method is enhanced by maximizing the covariance between data streams while simultaneously maximizing the rate of change of variances within each data stream. A recurrent set of connections used by ESN are used as a pre-processor between the inputs and the canonical projections in order to capture shared temporal information in two or more data streams. A solution to the problem of identifying a low dimensional manifold on a high dimensional dataspace is then presented in an incremental and adaptive manner. Finally, an online locally optimized extension of Laplacian Eigenmaps is derived termed the generalized incremental laplacian eigenmaps technique (GENILE). Apart from exploiting the benefit of the incremental nature of the proposed manifold based dimensionality reduction technique, most of the time the projections produced by this method are shown to produce a better classification accuracy in comparison with standard batch versions of these techniques - on both artificial and real datasets.

Page generated in 0.091 seconds