• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Age, geochemistry, and fluid characteristics of the MAX porphyry Mo deposit, southeast British Columbia

Lawley, Christopher John Michael Unknown Date
No description available.
2

Stratigraphy, paleogeography and tectonic evolution of early Paleozoic to Triassic pericratonic strata in the northern Kootenay Arc, southeastern Canadian Cordillera, British Columbia

Kraft, Jamie L Unknown Date
No description available.
3

Age, geochemistry, and fluid characteristics of the MAX porphyry Mo deposit, southeast British Columbia

Lawley, Christopher John Michael 11 1900 (has links)
MAX is a porphyry Mo deposit located near Trout Lake village in southeastern British Columbia. Mo mineralization is hosted by variably-altered calc-alkaline granodiorite dikes. Quartz veins have been subdivided into a paragenetic sequence based on vein style and crosscutting relationships. Post-magmatic Pb-Zn-Ag-bearing veins crosscut Mo-bearing veins. Similarities in fluid chemistry from both vein types suggest a genetic link between porphyry Mo mineralization and base-metal veins. Three molybdenite samples were collected from early and late Mo-bearing veins for Re-Os dating to constrain the timing of Mo-mineralizing events within the paragenetic sequence. All three dates overlap within analytical error, and yield a weighted average age of 80.3 ± 0.2 Ma. These dates are in excellent agreement with two 206Pb/238U weighted-average ages of the Trout Lake stock at 80.2 ± 1.0 Ma and 80.9 ± 1.6 Ma, indicating that the magmatic and hydrothermal ore-forming events were coeval and cogenetic.

Page generated in 0.0313 seconds