Spelling suggestions: "subject:"large synoptic curvey telescope (LSST)"" "subject:"large synoptic curvey elescope (LSST)""
1 |
Flexible service choreographyBarker, Adam January 2007 (has links)
Service-oriented architectures are a popular architectural paradigm for building software applications from a number of loosely coupled, distributed services. Through a set of procedural rules, workflow technologies define how groups of services coordinate with one another to achieve a shared task. A problem with workflow specifications is that often the patterns of interaction between the distributed services are too complicated to predict and analyse at design-time. In certain cases, the exact patterns of message exchange and the concrete services to call cannot be predicted in advance, due to factors such as fluctuating network load or the availability of services. It is a more realistic assumption to endow software components with the ability to make decisions about the nature and scope of their interactions at runtime. Multiagent systems offer a complementary paradigm: building software applications from a number of self interested, autonomous agents. This thesis presents an investigation into fusing the agency and service-oriented architecture paradigms, in order to facilitate flexible, workflow composition. Our approach offers an agent-based solution to service choreography and is founded on the concept of shared interaction protocols. By adopting an agent-based approach to service choreography, active autonomous agents can utilise the typically passive service-oriented architectures, found in Internet and Grid systems. In contrast with statically defined, centralised service orchestrations, decentralised agents can perform service choreography at runtime, allowing them to operate in scenarios where it is not possible to define the pattern of interaction in advance. Application to real scenarios is a driving factor behind this research. By working closely with a number of active Grid projects, namely AstroGrid and the Large-Synoptic Survey Telescope (LSST), a concrete set of requirements for scientific workflow have been derived, based on realistic science problems. This research has resulted in the MultiAgent Service Choreography (MASC) language to express scientific workflow, methodology for system building and a software framework which performs agent based Web service choreography, in order to enact distributed e-Science experiments. Evaluation of this thesis is conducted through case study, applying the language, methodology and software framework to solve a motivating set of workflow scenarios.
|
2 |
Cosmology with next generation radio telescopesWitzemann, Amadeus January 2019 (has links)
Philosophiae Doctor - PhD / The next generation of radio telescopes will revolutionize cosmology by
providing large three-dimensional surveys of the universe. This work presents
forecasts using the technique 21cm intensity mapping (IM) combined with
results from the cosmic microwave background, or mock data of galaxy
surveys. First, we discuss prospects of constraining curvature independently
of the dark energy (DE) model, finding that the radio instrument HIRAX
will reach percent-level accuracy even when an arbitrary DE equation of state
is assumed. This is followed by a study of the potential of the multi-tracer
technique to surpass the cosmic variance limit, a crucial method to probe
primordial non-Gaussianity and large scale general relativistic e↵ects. Using
full sky simulations for the Square Kilometre Array phase 1 (SKA 1 MID)
and the Large Synoptic Survey Telescope (LSST), including foregrounds, we
demonstrate that the cosmic variance contaminated scenario can be beaten
even in the noise free case. Finally, we derive the signal to noise ratio for the
cosmic magnification signal from foreground HI intensity maps combined
with background galaxy count maps. Instruments like SKA1 MID and
HIRAX are highly complementary and well suited for this measurement.
Thanks to the powerful design of the planned radio instruments, all results
confirm their potential and promise an exciting future for cosmology.
|
Page generated in 0.0498 seconds