• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic modeling and prognostic analysis of complex systems using condition-based real-time sensor signals

Bian, Linkan 14 March 2013 (has links)
This dissertation presents a stochastic framework for modeling the degradation processes of components in complex engineering systems using sensor based signals. Chapters 1 and 2 discuses the challenges and the existing literature in monitoring and predicting the performance of complex engineering systems. Chapter 3 presents the degradation model with the absorbing failure threshold for a single unit and the RLD estimation using the first-passage-time approach. Subsequently, we develop the estimate of the RLD using the first-passage-time approach for two cases: information prior distributions and non-informative prior distributions. A case study is presented using real-world data from rolling elements bearing applications. Chapter 4 presents a stochastic methodology for modeling degradation signals from components functioning under dynamically evolving environmental conditions. We utilize in-situ sensor signals related to the degradation process, as well as the environmental conditions, to predict and continuously update, in real-time, the distribution of a component’s residual lifetime. Two distinct models are presented. The first considers future environmental profiles that evolve in a deterministic manner while the second assumes the environment evolves as a continuous-time Markov chain. Chapters 5 and 6 generalize the failure-dependent models and develop a general model that examines the interactions among the degradation processes of interconnected components/subsystems. In particular, we model how the degradation level of one component affects the degradation rates of other components in the system. Hereafter, we refer to this type of component-to-component interaction caused by their stochastic dependence as degradation-rate-interaction (DRI). Chapter 5 focuses on the scenario in which these changes occur in a discrete manner, whereas, Chapter 6 focuses on the scenario, in which DRIs occur in a continuous manner. We demonstrate that incorporating the effects of component interactions significantly improves the prediction accuracy of RLDs. Finally, we outline the conclusion remarks and a future work plan in Chapter 7.

Page generated in 0.1298 seconds