• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a computational and neuroinformatics framework for large-scale brain modelling

Sanz Leon, Paula 16 October 2014 (has links)
The central theme of this thesis is the development of both a generalised computational model for large-scale brain networks and the neuroinformatics platform that enables a systematic exploration and analysis of those models. In this thesis we describe the mathematical framework of the computational model at the core of the tool The Virtual brain (TVB), designed to recreate collective whole brain dynamics by virtualising brain structure and function, allowing simultaneous outputs of a number of experimental modalities such as electro- and magnetoencephalography (EEG, MEG) and functional Magnetic Resonance Imaging (fMRI). The implementation allows for a systematic exploration and manipulation of every underlying component of a large-scale brain network model (BNM), such as the neural mass model governing the local dynamics or the structural connectivity constraining the space time structure of the network couplings. We also review previous studies related to brain network models and multimodal neuroimaging integration and detail how they are related to the general model presented in this work. Practical examples describing how to build a minimal *in silico* primate brain model are given. Finally, we explain how the resulting software tool, TVB, facilitates the collaboration between experimentalists and modellers by exposing both a comprehensive simulator for brain dynamics and an integrative framework for the management, analysis, and simulation of structural and functional data in an accessible, web-based interface. / The central theme of this thesis is the development of both a generalised computational model for large-scale brain networks and the neuroinformatics platform that enables a systematic exploration and analysis of those models. In this thesis we describe the mathematical framework of the computational model at the core of the tool The Virtual brain (TVB), designed to recreate collective whole brain dynamics by virtualising brain structure and function, allowing simultaneous outputs of a number of experimental modalities such as electro- and magnetoencephalography (EEG, MEG) and functional Magnetic Resonance Imaging (fMRI). The implementation allows for a systematic exploration and manipulation of every underlying component of a large-scale brain network model (BNM), such as the neural mass model governing the local dynamics or the structural connectivity constraining the space time structure of the network couplings. We also review previous studies related to brain network models and multimodal neuroimaging integration and detail how they are related to the general model presented in this work. Practical examples describing how to build a minimal *in silico* primate brain model are given. Finally, we explain how the resulting software tool, TVB, facilitates the collaboration between experimentalists and modellers by exposing both a comprehensive simulator for brain dynamics and an integrative framework for the management, analysis, and simulation of structural and functional data in an accessible, web-based interface.

Page generated in 0.1042 seconds