• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active visual category learning

Vijayanarasimhan, Sudheendra 02 June 2011 (has links)
Visual recognition research develops algorithms and representations to autonomously recognize visual entities such as objects, actions, and attributes. The traditional protocol involves manually collecting training image examples, annotating them in specific ways, and then learning models to explain the annotated examples. However, this is a rather limited way to transfer human knowledge to visual recognition systems, particularly considering the immense number of visual concepts that are to be learned. I propose new forms of active learning that facilitate large-scale transfer of human knowledge to visual recognition systems in a cost-effective way. The approach is cost-effective in the sense that the division of labor between the machine learner and the human annotators respects any cues regarding which annotations would be easy (or hard) for either party to provide. The approach is large-scale in that it can deal with a large number of annotation types, multiple human annotators, and huge pools of unlabeled data. In particular, I consider three important aspects of the problem: (1) cost-sensitive multi-level active learning, where the expected informativeness of any candidate image annotation is weighed against the predicted cost of obtaining it in order to choose the best annotation at every iteration. (2) budgeted batch active learning, a novel active learning setting that perfectly suits automatic learning from crowd-sourcing services where there are multiple annotators and each annotation task may vary in difficulty. (3) sub-linear time active learning, where one needs to retrieve those points that are most informative to a classifier in time that is sub-linear in the number of unlabeled examples, i.e., without having to exhaustively scan the entire collection. Using the proposed solutions for each aspect, I then demonstrate a complete end-to-end active learning system for scalable, autonomous, online learning of object detectors. The approach provides state-of-the-art recognition and detection results, while using minimal total manual effort. Overall, my work enables recognition systems that continuously improve their knowledge of the world by learning to ask the right questions of human supervisors. / text

Page generated in 0.0636 seconds