Spelling suggestions: "subject:"laser chemical vapor deposition"" "subject:"faser chemical vapor deposition""
1 |
Fabrication of Carbon/Silicon Carbide Laminate Composites by Laser Chemical Vapor Deposition and their Microstructural CharacterizationGillespie, Joshua Robert 09 January 2004 (has links)
Laser Chemical Vapor Deposition (LCVD) is a process by which reagent gases are thermally activated to react by means of a laser focused on a substrate. The reaction produces a ceramic or metallic deposit. This investigation focuses on the use of LCVD as a method for producing laminated composites, specifically carbon/silicon carbide laminates. The laminates that were produced were examined using scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS) to determine composition. Deposit geometrical characteristics such as laminate thickness and volcano depth as well as deposit morphology were also determined using SEM. Another subset of experiments was performed for the purpose of simultaneously depositing carbon and silicon carbide, ie., codeposition.
|
2 |
LCVD synthesis of carbon nanotubes and their characterizationBondi, Scott Nicholas 12 August 2004 (has links)
The primary goal of this research was to develop the laser chemical vapor deposition (LCVD) process to be able to directly deposit carbon nanotubes onto substrates selectively. LCVD has traditionally been used to directly deposit complex geometries of other materials, including many metals and ceramics. Carbon nanotube deposits were formed using codeposition and other techniques. Multiwall carbon nanotubes as small as 7 nm were synthesized. Utilizing electron microscopy, deposits were characterized to determine the effects of laser power, catalyst and hydrocarbon concentration, time, pressure, and other variables on the number of nanotubes formed, their size, and their spatial location. The most important variables were shown to be hydrocarbon and catalyst concentration and laser power. These results were analyzed and statistics based models were developed to express these trends. Additionally, the process was also used successfully to deposit linear patterns of carbon nanotubes. Carbon nanotube deposits were also carried out in the presence of an electric field. It was demonstrated that a field of sufficient strength could be used to orient tube growth.
LCVD is a thermally driven process and a thermal feedback and control system is typically employed to allow for real time control of the reaction zone temperatures. The current thermal imaging system installed on the LCVD reactor is limited to operation at temperatures above which nanotube deposition occurs. A heat and mass transport model was therefore developed to simulate deposition temperatures and provide an estimate of the desired laser power needed to achieve a desired reaction temperature. This model included all significant modes of heat transport including conduction, natural convection and radiation. Temperature dependant material properties were also employed to help achieve greater accuracy. Additionally, the model was designed to be able to simulate a scanning laser beam which was used to deposit linear patterns of carbon nanotubes. Modeling calculations of laser heating compared favorably with experimental data.
The results of this work show that LCVD has potential for use in the commercial market for selective direct deposition of patterns of aligned carbon nanotubes on multiple substrate materials.
|
3 |
Process Development for the Manufacture of an Integrated Dispenser Cathode Assembly Using Laser Chemical Vapor DepositionJohnson, Ryan William 13 December 2004 (has links)
Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitridemolybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize processshape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multilayered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify ratelimiting regimes. A computational thermalstructural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Techs LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitridemolybdenum composite was also demonstrated. In sum, this work served to both advance the general science of Laser Chemical Vapor Deposition and to elucidate the practicality of fabricating ceramicmetal composites using the process.
|
Page generated in 0.0948 seconds