• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 10
  • 7
  • 3
  • 2
  • 2
  • Tagged with
  • 83
  • 83
  • 30
  • 27
  • 24
  • 20
  • 20
  • 19
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laser cooling and trapping of atoms

Townsend, Christopher G. January 1995 (has links)
A detailed experimental and theoretical investigation of a magneto-optical trap for caesium atoms is presented. Particular emphasis has been placed on achieving high spatial number densities and low temperatures. Optimizing both of these together enables efficient evaporative cooling from a conservative trap, a procedure which has recently led to the first observations of Bose-Einstein condensation in a dilute atomic vapour. The behaviour of a magneto-optical trap is nominally determined by four independent parameters: the detuning and intensity of the light field, the magnetic field gradient and the number of trapped atoms. A model is presented which incorporates previous treatments into a single description of the trap that encompasses a wide range of its behaviour. This model was tested quantitatively by measuring the temperature of the cloud and its spatial distribution as a function of the four parameters. The maximum density was found to be limited both by the reabsorption of photons scattered within the cloud and by a reduction of the confining force at small light shifts. The nonlinear variation with position of the restoring force was found to be significant in limiting the number of atoms confined to a high density. A maximum density in phase space (defined as the number of atoms in a box with sides of dimension one thermal de Broglie wavelength) of (1.5 ± 0.5) x 10<sup>-5</sup> was observed, with a spatial density of 1.5 x 10<sup>11</sup> atoms per cm<sup>3</sup>. Cold collision losses from a caesium magneto-optical trap have been studied with the purpose of assessing their influence on spatial densities. In contrast to previous measurements of similar quantities, these measurements did not require the use of an ultra-low (< 10<sup>-10</sup> Torr) background vapour pressure. The dependence of the cold collision loss coefficient β on the trapping intensity was measured to permit identification of the different cold collision processes. The largest loss rates observed were those due to hyperfine structure-changing collisions, with a coefficient β = (2±1) x 10<sup>-10</sup>cm<sup>3</sup>s<sup>-1</sup>. A study is presented of a modified magneto-optical trap in which a fraction of the population is shelved into a hyperfine level that does not interact with the trapping light. In this so-called "dark" magneto-optical trap, improved densities of nearly 10<sup>12</sup>cm<sup>-3</sup> have been previously reported for sodium. The application of the technique to caesium is not straightforward due to the larger excited state hyperfine splittings. A simple theory for caesium is presented and its main predictions verified by measurements of density, number and temperature. A density of nearly 10<sup>12</sup>cm,<sup>-3</sup> was indeed obtained but at a temperature substantially higher than in the conventional magneto-optical trap.
12

Molecular Bose-Einstein condensates and p-wave Feshbach molecules of 6Li2

Fuchs, Jürgen Markus Walter. January 2009 (has links)
Thesis (PhD) - Swinburne University of Technology, Centre for Atom Optics and Ultrafast Spectroscopy, 2009. Thesis (PhD) - Australian Research Council, Centre of Excellence for Quantum-Atom Optics, 2009. / Thesis submitted for the degree of Doctor of Philosophy, Centre for Atom Optics and Ultrafast Spectroscopy, and, ARC Centre for Quantum-Atom Optics, Swinburne University of Technology, 2009. Typescript. Bibliography: p. 131-149.
13

Observation of superfluorescent emissions from laser-cooled atoms /

Paradis, Eric G. January 2007 (has links)
Thesis (M.Sc.)--York University, 2007. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references. Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR32016
14

Laser cooling of rubidium atoms in a magneto-optical trap.

Hopkins, Stephen Antony. January 1995 (has links)
Thesis (PhD)-Open University.
15

Design and development of an external cavity diode laser for laser cooling and spectroscopy applications /

Nyamuda, Gibson Peter. January 2006 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
16

Transverse Laser Cooling of Calcium Monohydride Molecules

Vazquez-Carson, Sebastian Francisco January 2022 (has links)
In this thesis, I demonstrate Doppler and Sisyphus cooling of a cryogenic buffer-gas beam of CaH molecules. I detail the construction and optimization of the experimental apparatus, including the cryogenic source, laser systems, vacuum systems and detection schemes. I demonstrate that the cryogenic source produces a bright and slow beam of CaH molecules via ablation of a solid chemical target and thermalization with a He buffer gas. The molecular beam exits the ablation cell with an average forward velocity of 250 ±200 m/s and a molecular beam flux per ablation pulse of ≈ 1×1010 per steradian per pulse. I present the spectroscopic determination of the molecular transitions necessary to pursue laser cooling. These include the X2Σ+ → A2Π1/2 and the X2Σ+ → B2Σ+ transitions that each contain two spin-rotation states, J = 1/2 and J = 3/2, and a further pair of hyperfine states, F = 0,1 and F = 1,2, respectively. Finally, I describe the vibrational repumping transitions between the four hyperfine states of the J = 1/2 and J = 3/2 branches of the V = 1 vibrational state back to the ground state via decay from an intermediary state, X2Σ+(V = 1) → B2Σ+(V = 0) → X2Σ+(V = 0). I present measurements of the vibrational decay probabilities from the B2Σ+(V = 0) and A2Π1/2(V = 0) excited states to the V = 0,1 and 2 states of the ground X2Σ+ state. Next, I show that we can achieve a high scattering rate of ≈ 1.6E6 photons/second while cycling on the X2Σ+ → A2Π1/2 transition. Finally, I demonstrate the ability to perform transverse cooling of a beam of CaH molecules through both the Doppler mechanism and magnetically assisted Sisyphus mechanism. With the help of a transverse standing wave of laser light, I show that we are able to lower the molecular beam’s transverse temperature from 12.2±1.2 mK to 5.7±1.1mK. This thesis represents a promising start to laser slowing and magneto-optical trapping of CaH molecules, which could provide trapped ultracold samples of atomic hydrogen upon dissociation of the trapped CaH molecules.
17

A cryogenic buffer-gas cooled beam of barium monohydride for laser slowing, cooling, and trapping

Iwata, Geoffrey Zerbinatti January 2018 (has links)
Ultracold molecules promise a revolutionary test bed for quantum science with applications ranging from experiments that probe the nature of our universe, to hosting new platforms for quantum computing. Cooling and trapping molecules in the ultracold regime is the first step to unlocking the wide array of proposed applications, and developing these techniques to control molecules is a key but challenging research field. In this thesis, we describe progress towards a new apparatus designed to cool and trap barium monohydride (BaH), a molecule that is amenable to laser cooling and has prospects as a precursor for ultracold atomic hydrogen. The same complexity that makes molecules interesting objects of study creates challenges for optical control. To mitigate some of these challenges, we first cool the molecules using cryogenic techniques and technologies. Our apparatus uses a cryogenic buffer gas to thermalize BaH within a contained cell. The molecules are extracted into a beam with millikelvin transverse temperature, and forward velocities <100 m/s. The BaH beam in this work is the brightest hydride beam to date, with molecule density and kinetic characteristics well suited for laser cooling and trapping.
18

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.
19

Ion Crystals Produced by Laser and Sympathetic Cooling in a Linear RF Ion Trap

Zhu, Feng 2010 December 1900 (has links)
A detailed investigation of ion crystals produced by laser and sympathetic cooling in a linear RF trap has been conducted. The laser cooling methods were examined and applied to the trapped ^24Mg^(positive) ions. The crystals produced by the laser cooling were studied, including the dependence on RF voltage, end cap DC voltage, laser power and laser frequency. By manipulating the different RF voltages and endcap DC voltages, the structure phase transition of the ion crystals was observed. In addition, the sympathetic cooling of different ion species with the laser cooled 24Mg^(positive) was carried out. In this process, the mixed Mg^(positive) and He^(positive) crystals were created andidentified, and mixed Mg^(positive) and H2^(positive) crystals were produced. The effect of an unwanted chemical reaction of Mg^(positive) and H2 was observed and minimized. After sympathetic cooling of light ion species, the sympathetic cooling of heavy molecular ions such as fullerene ions was also carried out. The efficiencies and final temperature in both cases are very different. Theoretically to interpret the results, molecular dynamics simulations of the laser cooling and sympathetic cooling were implemented. And the simulations were compared with the experimental results. In the process of carrying out this research, the optics were rebuilt to provide reliable UV sources for the photoionization and laser cooling of Mg ions. The imaging system was reconfigured to take the images of ion crystals. New elements were added tin the ion trap to improve the ability to manipulate ions.
20

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.

Page generated in 0.1258 seconds