• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Injection de fautes par impulsion laser dans des circuits sécurisés / Fault injections by laser impulsion in secured microcontrollers

Sarafianos, Alexandre 17 September 2013 (has links)
De tout temps, l’Homme s’est vu contraint de protéger les fruits de sa créativité et les domaines concernant sa sécurité. Ses informations sont souvent sensibles, dans les relations politiques et commerciales notamment. Aussi, la nécessité de les protéger en les rendant opaques au regard d’adversaires ou de concurrents est vite survenue. Depuis l’Antiquité, les procédés de masquages et enfin de cryptages furent nombreux. Les techniques de protection, depuis l’époque industrielle n’ont fait que croître pour voir apparaître, durant la seconde guerre mondiale, l’archétype des machines électromécaniques (telle l’Enigma), aux performances réputées inviolables. De nos jours, les nouveaux circuits de protection embarquent des procédés aux algorithmes hyper performants. Malgré toutes ces protections, les produits restent la cible privilégiée des « pirates » qui cherchent à casser par tous les moyens les structures de sécurisation, en vue d’utilisations frauduleuses. Ces « hackers » disposent d’une multitude de techniques d’attaques, l’une d’elles utilise un procédé par injections de fautes à l’aide d’un faisceau laser. Dès le début de ce manuscrit (Chapitre I), l’état de l’art de l’injection de fautes sera développé, en se focalisant sur celles faite à l’aide d’un faisceau laser. Ceci aidera à bien appréhender ces procédés intrusifs et ainsi protéger au mieux les microcontrôleurs sécurisés contre ces types d’attaques. Il est nécessaire de bien comprendre les phénomènes physiques mis en jeu lors de l’interaction entre une onde de lumière cohérente, tels les lasers et le matériau physico-chimique qu’est le silicium. De la compréhension de ces phénomènes, une modélisation électrique des portes CMOS sous illumination laser a été mise en oeuvre pour prévoir leurs comportements (chapitre II). De bonnes corrélations ont pu être obtenues entre mesures et simulations électrique. Ces résultats peuvent permettre de tester la sensibilité au laser de portes CMOS au travers de cartographies de simulation. De cette meilleure compréhension des phénomènes et de ce simulateur mis en place, de nombreuses contre-mesures ont été imaginées. Les nouvelles techniques développées, présentées dans ce manuscrit, donnent déjà des pistes pour accroître la robustesse des circuits CMOS contre des attaques laser. D’ores et déjà, ce travail a permis la mise en oeuvre de détecteurs lasers embarqués sur les puces récentes, renforçant ainsi sensiblement la sécurité des produits contre une attaque de type laser. / From time immemorial, human beings have been forced to protect the fruits of their creativity and ensure the security of their property. This information is very often strategic, in particular in political and commercial relationships. Also the need to protect this information by keeping it concealed in regards to enemies or competitors soon appeared. From ancient times, the methods used for masking and eventually encrypting information were numerous. Protection techniques have only advanced grown since the industrial era and have led to the precursor of electro-mechanic machines (such as the famous Enigma machine). Nowadays, new protection circuitry embeds very efficient algorithms. Despite these protections, they remain a prime target for « attackers » who try to break through all means of securing structures, for fraudulent uses. These « attackers » have a multitude of attack techniques. One of them uses a method of fault injections using a laser beam. From the beginning (Chapter I), this manuscript describes the state of the art of fault injections, focusing on those made using a laser beam. It explains these intrusive methods and provides information on how to protect even the most secure microcontrollers against these types of attacks. It is necessary to understand the physical phenomena involved in the interaction between a coherent light wave, such as lasers, and the physicochemical material that makes up a microcontroller. To better understanding these phenomena, an electrical modeling of CMOS gates under laser illumination was implemented to predict their behavior (Chapter II). Good correlations have been obtained between measurements and electrical simulation. These results can be used to test the laser sensitivity of CMOS gates through electrical cartographies. Due to the better understanding of the phenomena and the developed simulator, many countermeasures have been developed. The techniques presented in this manuscript offer new possibilities to increase the robustness of CMOS circuits against laser attacks. This work has already enabled the implementation of efficient counter-measures on embedded laser sensors and significantly enhanced product security against different laser attacks.
2

Injection Locking Of Semiconductor Mode-locked Lasers For Long-term Stability Of Widely Tunable Frequency Combs

Williams, Charles 01 January 2013 (has links)
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted modes of 36 dB, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of actively harmonically mode-locked lasers, the injection locking technique for regeneratively mode-locked lasers, or Coupled OptoElectronic Oscillators (COEOs), is also demonstrated and characterized extensively.
3

Rétro-conception matérielle partielle appliquée à l'injection ciblée de fautes laser et à la détection efficace de Chevaux de Troie Matériels / Partial hardware reverse engineering applied to fine grained laser fault injection and efficient hardware trojans detection

Courbon, Franck 03 September 2015 (has links)
Le travail décrit dans cette thèse porte sur une nouvelle méthodologie de caractérisation des circuits sécurisés basée sur une rétro-conception matérielle partielle : d’une part afin d’améliorer l’injection de fautes laser, d’autre part afin de détecter la présence de Chevaux de Troie Matériels (CTMs). Notre approche est dite partielle car elle est basée sur une seule couche matérielle du composant et car elle ne vise pas à recréer une description schématique ou fonctionnelle de l’ensemble du circuit.Une méthodologie invasive de rétro-conception partielle bas coût, rapide et efficace est proposée. Elle permet d’obtenir une image globale du circuit où seule l’implémentation des caissons des transistors est visible. La mise en œuvre de cette méthodologie est appliquée sur différents circuits sécurisés. L’image obtenue selon la méthodologie déclinée précédemment est traitée afin de localiser spatialement les portes sensibles, voire critiques en matière de sécurité. Une fois ces portes sensibles identifiées, nous caractérisons l’effet du laser sur différentes parties de ces cellules de bases et nous montrons qu’il est possible de contrôler à l’aide d’injections de fautes laser la valeur contenue dans ces portes. Cette technique est inédite car elle valide le modèle de fautes sur une porte complexe en technologie 90 nm. Pour finir une méthode de détection de CTMs est proposée avec le traitement de l’image issue de la rétro-conception partielle. Nous mettons en évidence l’ajout de portes non répertoriées avec l’application sur un couple de circuits. La méthode permet donc de détecter, à moindre coût, de manière rapide et efficace la présence de CTMs. / The work described in this thesis covers an integrated circuit characterization methodology based on a partial hardware reverse engineering. On one hand in order to improve integrated circuit security characterization, on the other hand in order to detect the presence of Hardware Trojans. Our approach is said partial as it is only based on a single hardware layer of the component and also because it does not aim to recreate a schematic or functional description of the whole circuit. A low cost, fast and efficient reverse engineering methodology is proposed. The latter enables to get a global image of the circuit where only transistor's active regions are visible. It thus allows localizing every standard cell. The implementation of this methodology is applied over different secure devices. The obtained image according to the methodology declined earlier is processed in order to spatially localize sensible standard cells, nay critical in terms of security. Once these cells identified, we characterize the laser effect over different location of these standard cells and we show the possibility with the help of laser fault injection the value they contain. The technique is novel as it validates the fault model over a complex gate in 90nm technology node.Finally, a Hardware Trojan detection method is proposed using the partial reverse engineering output. We highlight the addition of few non listed cells with the application on a couple of circuits. The method implementation therefore permits to detect, without full reverse-engineering (and so cheaply), quickly and efficiently the presence of Hardware Trojans.

Page generated in 0.1092 seconds