• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancement of high power pulsed laser ablation and biological hard tissue applications

Kang, Hyun Wook, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
2

Enhancement of high power pulsed laser ablation and biological hard tissue applications

Kang, Hyun Wook 28 August 2008 (has links)
Not available / text
3

New biomedical applications of near-infrared femtosecond laser ablation

Qiu, Jinze 14 February 2012 (has links)
The main purpose of this research was to investigate new medical applications of femtosecond laser ablation. A near-infrared femtosecond laser was tested and proved to be able to overcome the existing limitations and outperform the conventional long-pulse lasers in the areas of human urinary calculus (kidney stone) lithotripsy and skin treatment. The two primary objectives of my research are: 1) to investigate the feasibility of using femtosecond pulsed laser radiation to ablate urinary calculus of various compositions. The laser-calculus interaction mechanism was characterized using pump probe imaging and fast flash imaging. A novel fiber delivery system was developed to transmit and focus high energy femtosecond pulses for urinary calculus lithotripsy. The successful demonstration of the femtosecond laser lithotripsy provided a promising treatment method better than the existing long-pulse laser lithotripsy in a few different aspects, including less collateral damage to surrounding tissue, small-size debris and more controlled experimental condition. 2) to investigate the depth limitation of femtosecond subsurface ablation in scattering skin sample and develop a prototype tissue optical clearing device to enhance femtosecond beam penetration for deeper subsurface cavitation production in the skin. The successful demonstration of the device has potential benefits to new femtosecond-based therapies for reshaping or removing subcutaneous tissues. / text

Page generated in 0.047 seconds